Difference between revisions of "Exercícios de Dedução Natural"
Jump to navigation
Jump to search
Tag: 2017 source edit |
Tag: 2017 source edit |
||
Line 5: | Line 5: | ||
====<math>(\varphi \land \psi) \land \delta \vdash \varphi \land (\psi \land \delta)</math>==== | ====<math>(\varphi \land \psi) \land \delta \vdash \varphi \land (\psi \land \delta)</math>==== | ||
<!----><p>{{#ev:youtube|moh07B8dv2k|||||start=528&end=582&loop=1}}</p> | <!----><p>{{#ev:youtube|moh07B8dv2k|||||start=528&end=582&loop=1}}</p> | ||
− | + | ====<math>\varphi \vdash \varphi \land \varphi</math>==== | |
− | --><p>{{#ev:youtube|moh07B8dv2k|||||start=583&end=636&loop=1}}</p> | + | <!----><p>{{#ev:youtube|moh07B8dv2k|||||start=583&end=636&loop=1}}</p> |
− | + | ====<math>\alpha \land \beta, \gamma \land \delta \vdash \gamma \land \beta</math>==== | |
− | --><p>{{#ev:youtube|moh07B8dv2k|||||start=637}}</p> | + | <!----><p>{{#ev:youtube|moh07B8dv2k|||||start=637}}</p> |
− | + | ====<math>\alpha \to (\beta \to \gamma) \vdash \beta \to (\alpha \to \gamma)</math>==== | |
− | --><p>{{#ev:youtube|mlEYLd56pMg|||||start=579}}</p> | + | <!----><p>{{#ev:youtube|mlEYLd56pMg|||||start=579}}</p> |
− | + | ====<math>\vdash \alpha \to (\beta \to \alpha)</math>==== | |
− | --><p>{{#ev:youtube|mlEYLd56pMg|||||start=768}}</p> | + | <!----><p>{{#ev:youtube|mlEYLd56pMg|||||start=768}}</p> |
− | + | ====<math>\vdash \alpha \to \alpha</math>==== | |
− | --><p>{{#ev:youtube|mlEYLd56pMg|||||start=888}}</p> | + | <!----><p>{{#ev:youtube|mlEYLd56pMg|||||start=888}}</p> |
− | + | ====<math>\alpha \to \beta \vdash \alpha \to (\alpha \to \beta)</math>==== | |
− | --><p>{{#ev:youtube|mlEYLd56pMg|||||start=965}}</p> | + | <!----><p>{{#ev:youtube|mlEYLd56pMg|||||start=965}}</p> |
− | + | ====<math>\alpha \to (\alpha \to \beta) \vdash \alpha \to \beta</math>==== | |
− | --><p>{{#ev:youtube|mlEYLd56pMg|||||start=1015}}</p> | + | <!----><p>{{#ev:youtube|mlEYLd56pMg|||||start=1015}}</p> |
− | + | ====<math>\gamma \to \alpha, \gamma \to \beta \vdash \gamma \to (\alpha \land \beta)</math>==== | |
− | --><p>{{#ev:youtube|mlEYLd56pMg|||||start=1098}}</p> | + | <!----><p>{{#ev:youtube|mlEYLd56pMg|||||start=1098}}</p> |
<!----> | <!----> | ||
− | + | ====<math>\beta \lor (\alpha \land \beta) \vdash \beta</math>==== | |
− | --><p>{{#ev:youtube|yUejpYb2NgI|||||start=759}}</p> | + | <!----><p>{{#ev:youtube|yUejpYb2NgI|||||start=759}}</p> |
− | + | ====<math>(\alpha \lor \beta) \to \gamma \vdash (\alpha \to \gamma) \land (\beta \to \gamma)</math>==== | |
− | --><p>{{#ev:youtube|yUejpYb2NgI|||||start=850}}</p> | + | <!----><p>{{#ev:youtube|yUejpYb2NgI|||||start=850}}</p> |
− | + | ====<math>\alpha \lor \beta \not\vdash \alpha \land \beta</math>==== | |
− | --><p>{{#ev:youtube|yUejpYb2NgI|||||start=1231}}</p> | + | <!----><p>{{#ev:youtube|yUejpYb2NgI|||||start=1231}}</p> |
<!-- --> | <!-- --> | ||
− | + | ====<math>\alpha \vdash \neg\neg\alpha</math>==== | |
− | --><p>{{#ev:youtube|-Exorelokdo|||||start=463}}</p> | + | <!----><p>{{#ev:youtube|-Exorelokdo|||||start=463}}</p> |
− | + | ====<math>\beta \to \alpha, \beta \to \neg\alpha \vdash \neg\beta</math>==== | |
− | --><p>{{#ev:youtube|-Exorelokdo|||||start=498}}</p> | + | <!----><p>{{#ev:youtube|-Exorelokdo|||||start=498}}</p> |
− | + | ====<math>\alpha, \neg\alpha \vdash \neg\beta</math>==== | |
− | --><p>{{#ev:youtube|-Exorelokdo|||||start=570}}</p> | + | <!----><p>{{#ev:youtube|-Exorelokdo|||||start=570}}</p> |
− | + | ====<math>\alpha\lor\beta, \neg\alpha\lor\gamma \vdash \beta\lor\gamma</math>==== | |
− | --><p>{{#ev:youtube|-Exorelokdo|||||start=596}}</p> | + | <!----><p>{{#ev:youtube|-Exorelokdo|||||start=596}}</p> |
− | + | ====<math> \alpha\to\beta \vdash \neg\beta\to\neg\alpha</math>==== | |
− | --><p>{{#ev:youtube|-Exorelokdo|||||start=741}}</p> | + | <!----><p>{{#ev:youtube|-Exorelokdo|||||start=741}}</p> |
− | + | ====<math>\neg(\alpha \lor \beta) \dashv\vdash \neg\alpha\land\neg\beta</math>==== | |
− | --><p>{{#ev:youtube|-Exorelokdo|||||start=817}}</p> | + | <!----><p>{{#ev:youtube|-Exorelokdo|||||start=817}}</p> |
===Derivabilidade de regras=== | ===Derivabilidade de regras=== |
Revision as of 15:41, 15 September 2020
Contents
Dedução Natural para a Lógica Proposicional Intuicionista
Derivabilidade de sequentes
Derivabilidade de regras
Dedução Natural para a Lógica Proposicional Clássica
Derivabilidade de sequentes
- Derivações na forma de árvores rotuladas com fórmulas
- Terceiro Excluído / Tertium Non Datur: Tarefa: Demonstrar a mesma fórmula, invertendo a ordem de aplicação das regras de introdução da disjunção.