Difference between revisions of "Exercícios de semântica formal para a Lógica de Primeira Ordem Clássica"
Jump to navigation
Jump to search
Tag: 2017 source edit |
Tag: 2017 source edit |
||
Line 1: | Line 1: | ||
== Validade global de sequentes == | == Validade global de sequentes == | ||
− | === <math> \exists x \forall y. \varphi ▷ \forall y \exists x. \varphi </math> === | + | === <math> \exists x \forall y. \varphi </math> ▷ <math> \forall y \exists x. \varphi </math> === |
: {{#ev:youtube|7ihfZ4wlgFw|||||start=328&loop=1}} | : {{#ev:youtube|7ihfZ4wlgFw|||||start=328&loop=1}} | ||
− | === <math> \forall y \exists x. \varphi ▶ \exists x \forall y. \varphi </math> === | + | === <math> \forall y \exists x. \varphi </math> ▶ <math> \exists x \forall y. \varphi </math> === |
: {{#ev:youtube|7ihfZ4wlgFw|||||start=563&loop=1}} | : {{#ev:youtube|7ihfZ4wlgFw|||||start=563&loop=1}} | ||
Revision as of 12:16, 6 October 2020
Contents
- 1 Validade global de sequentes
- 1.1 Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \exists x \forall y. \varphi } ▷ Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \forall y \exists x. \varphi }
- 1.2 Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \forall y \exists x. \varphi } ▶ Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \exists x \forall y. \varphi }
- 2 Validade de sequentes em uma interpretação fixa
- 3 Correção de regras
- 4 Para reflexão
- 5 Veja também
- 6 Links externos