Difference between revisions of "Somatório e Produtório"
(add Principais representacoes) |
|||
Line 31: | Line 31: | ||
---- | ---- | ||
+ | == Principais representações == | ||
+ | ====Soma simples==== | ||
+ | <math>\sum_{i=1}^{n} x_i = x_1+x_2+...+x_n</math> | ||
+ | |||
+ | ====Soma de quadrados==== | ||
+ | <math>\sum_{i=1}^{n} x_i^2 = x_1^2+x_2^2+...+x_n^2</math> | ||
+ | |||
+ | ====Quadrado da soma==== | ||
+ | <math>(\sum_{i=1}^{n} x_i)^2 = (x_1+x_2+...+x_n)^2</math> | ||
+ | |||
+ | ====Soma de produtos==== | ||
+ | <math>\sum_{i=1}^{n} x_i*y_i = x_1*y_1+x_2*y_2+...+x_n*y_n</math> | ||
+ | |||
+ | ====Produtos das somas==== | ||
+ | <math>(\sum_{i=1}^{n} x_i)*(\sum_{j=1}^{m} y_j) = (x_1+x_2+...+x_n)*(y_1+y_2+...+y_n)</math> | ||
+ | |||
+ | ---- | ||
== Aplicação das Propriedades == | == Aplicação das Propriedades == | ||
Alguns exemplos de aplicações das propriedades do somatório: | Alguns exemplos de aplicações das propriedades do somatório: | ||
Line 41: | Line 58: | ||
====F#==== | ====F#==== | ||
+ | |||
+ | ---- | ||
+ | ==Referências== |
Revision as of 13:29, 4 December 2015
Contents
Propriedades de Somatório
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^t C\cdot f(n) = C\cdot \sum_{n=s}^t f(n) } , onde C é uma constante.
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^t f(n) + \sum_{n=s}^{t} g(n) = \sum_{n=s}^t \left[f(n) + g(n)\right] }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^t f(n) - \sum_{n=s}^{t} g(n) = \sum_{n=s}^t \left[f(n) - g(n)\right] }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum^n_{i = m} f(i) = \sum^{n+p}_{i = m+p} f(i-p) }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum\limits_{n=s}^{t} j = \sum\limits_{n=1}^{t} j - \sum\limits_{n=1}^{s-1} j }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^j f(n) + \sum_{n=j+1}^t f(n) = \sum_{n=s}^t f(n)} , note que Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s \leq j \leq t }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=m}^n i = \frac{n(n+1)}{2} - \frac{m(m-1)}{2} = \frac{(n+1-m)(n+m)}{2},} progressão aritmética.
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=0}^n i = \sum_{i=1}^n i = \frac{n(n+1)}{2} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum\limits_{k=0}^{n-1}{2^k} = 2^n-1 }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=s}^m\sum_{j=t}^n {a_i}{c_j} = \sum_{i=s}^m a_i \cdot \sum_{j=t}^n c_j }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=0}^n i^3 = \left(\sum_{i=0}^n i\right)^2 }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=m}^{n-1} a^i = \frac{a^m-a^n}{1-a} (m < n) }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=0}^{n-1} a^i = \frac{1-a^n}{1-a} }
Principais representações
Soma simples
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=1}^{n} x_i = x_1+x_2+...+x_n}
Soma de quadrados
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=1}^{n} x_i^2 = x_1^2+x_2^2+...+x_n^2}
Quadrado da soma
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\sum_{i=1}^{n} x_i)^2 = (x_1+x_2+...+x_n)^2}
Soma de produtos
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=1}^{n} x_i*y_i = x_1*y_1+x_2*y_2+...+x_n*y_n}
Produtos das somas
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\sum_{i=1}^{n} x_i)*(\sum_{j=1}^{m} y_j) = (x_1+x_2+...+x_n)*(y_1+y_2+...+y_n)}
Aplicação das Propriedades
Alguns exemplos de aplicações das propriedades do somatório: