Difference between revisions of "Exemplo 4.1.1 - Solução"
Jump to navigation
Jump to search
Jeffersonwaa (talk | contribs) |
|||
Line 1: | Line 1: | ||
''Há 3 voos disponiveis de Indianapolis para St.Louis e, independentemente de quais desses voos será escolhidos, há 5 voos disponiveis de St.Louis para Dallas.De quantas maneiras uma pessoa pode voar de Indianapolis para St.Louis para Dallas? (pág 302)'' | ''Há 3 voos disponiveis de Indianapolis para St.Louis e, independentemente de quais desses voos será escolhidos, há 5 voos disponiveis de St.Louis para Dallas.De quantas maneiras uma pessoa pode voar de Indianapolis para St.Louis para Dallas? (pág 302)'' | ||
− | '''Solução:''' Uma vez que existe 3 maneiras para fazer a primeira parte da viajem e 5 maneiras de continuar com a segunda parte da viagem, independentemente de qual vôo for feita para a primeira etapa da viagem, pela regra do produto há 3 x 5 =15 maneiras de fazer toda a viagem. | + | '''Solução:''' |
+ | |||
+ | Uma vez que existe 3 maneiras para fazer a primeira parte da viajem e 5 maneiras de continuar com a segunda parte da viagem, independentemente de qual vôo for feita para a primeira etapa da viagem, pela regra do produto há 3 x 5 =15 maneiras de fazer toda a viagem. | ||
[[Contagem]] | [[Contagem]] |
Latest revision as of 20:13, 9 December 2015
Há 3 voos disponiveis de Indianapolis para St.Louis e, independentemente de quais desses voos será escolhidos, há 5 voos disponiveis de St.Louis para Dallas.De quantas maneiras uma pessoa pode voar de Indianapolis para St.Louis para Dallas? (pág 302)
Solução:
Uma vez que existe 3 maneiras para fazer a primeira parte da viajem e 5 maneiras de continuar com a segunda parte da viagem, independentemente de qual vôo for feita para a primeira etapa da viagem, pela regra do produto há 3 x 5 =15 maneiras de fazer toda a viagem.