544 bytes added
, 00:21, 10 December 2015
'''Solução:'''
Expandindo <math>(3a-7b)^{40}</math> usando o teorema binomial, localizamos o termo com o produto <math>a^{17}b^{23}</math>, e então encontramos o coeficiente:
<math>(3a-7b)^{40} = (3a+(-7b))^{40}</math>
= <math>\cdots + \binom{40}{17} (3a)^{17}(-7b)^{23} + \cdots</math>
= <math>\cdots + \binom{40}{17} 3^{17}(-7)^23a^{17}b^{23} + \cdots</math>
Assim, o coeficiente de <math>a^{17}b^{23}</math> é <math>\binom{40}{17} 3^{17}(-7)^{23}</math>, que também pode ser escrito como <math>\binom{40}{23} 3^{17}(-7)^{23}</math>.