Difference between revisions of "Somatório e Produtório"
(36 intermediate revisions by 2 users not shown) | |||
Line 52: | Line 52: | ||
Alguns exemplos de aplicações das propriedades do somatório: | Alguns exemplos de aplicações das propriedades do somatório: | ||
+ | === Exemplo 1 === | ||
+ | Utilize as propriedades de notação de somatório e, | ||
+ | possivelmente, mudança de índice para deduzir que | ||
+ | <math>\sum_{j=1}^n (a_j - a_{j-1})</math> é igual a <math>a_n - a_0</math>, | ||
+ | onde <math>(a_i )_{i=0}^{\infty}</math> é uma sequência de números reais. | ||
+ | Este tipo de soma é bastante conhecida em Matemática como ''soma telescópica''. | ||
+ | ==== Resolução ==== | ||
+ | |||
+ | <math> \sum_{j=1}^n (a_j - a_{j-1}) = (a_n - a_{n-1}) + \sum_{j=1}^{n-1}</math> | ||
+ | |||
+ | |||
+ | Expandindo <math>n</math> vezes: | ||
+ | |||
+ | <math> \sum_{j=1}^n (a_j - a_{j-1}) = (a_n - a_{n-1}) + (a_{n-1} - a_{n-2}) + ... + (a_2 - a_1) + (a_1 - a_0)</math> | ||
+ | |||
+ | <math> \sum_{j=1}^n (a_j - a_{j-1}) = a_n - \cancel{a_{n-1}} + \cancel{a_{n-1}} - \cancel{a_{n-2}} + ... + \cancel{a_2} - \cancel{a_1} + \cancel{a_1} - a_0</math> | ||
+ | |||
+ | <math> \sum_{j=1}^n (a_j - a_{j-1}) = a_n - a_0 </math> | ||
+ | |||
+ | === Exemplo 2 === | ||
+ | |||
+ | O objetivo deste problema é encontrar uma fórmula fechada para | ||
+ | |||
+ | <math>\sum_{k=1}^n (2 \cdot k - 1 )</math> | ||
+ | |||
+ | |||
+ | Para tal, note que | ||
+ | |||
+ | <math>k^2 - ( k - 1)^2 = 2k - 1</math> | ||
+ | |||
+ | |||
+ | Logo, | ||
+ | |||
+ | <math>\sum_{k=1}^n \left ( k^2 - ( k - 1)^2 \right ) = \sum_{k=1}^n ( 2k - 1) </math> | ||
+ | |||
+ | |||
+ | Então, utilize o resultado do problema conhecido como "soma telescópia" do exemplo 1 para encontrar a fórmula | ||
+ | desejada. | ||
+ | |||
+ | ==== Resolução ==== | ||
+ | |||
+ | <math> \sum_{k=1}^n 2 \cdot k - 1 = \sum_{k=1}^n k^2 - (k-1)^2</math> | ||
+ | |||
+ | |||
+ | Pela fórmula da soma telescópica | ||
+ | |||
+ | <math> \sum_{k=1}^n 2 \cdot k - 1 = n^2 - 0^2 = n^2</math> | ||
+ | |||
+ | === Exemplo 3 === | ||
+ | |||
+ | Utilize as propriedades de notação de somatório e os seus conhecimentos de soma de termos de uma PA para | ||
+ | calcular | ||
+ | |||
+ | <math>\sum_{k=1}^n (2 \cdot k - 1 )</math> | ||
+ | |||
+ | de forma distinta daquela usada no problema anterior. Qual das duas | ||
+ | soluções lhe parece mais fácil? | ||
+ | |||
+ | ==== Resolução ==== | ||
+ | |||
+ | <math>\sum_{k=1}^n (2 \cdot k - 1 ) = \sum_{k=1}^n 2 \cdot k - \sum_{k=1}^n 1</math> | ||
+ | |||
+ | <math>\sum_{k=1}^n (2 \cdot k - 1 ) = 2 \cdot \sum_{k=1}^n k - n</math> | ||
+ | |||
+ | <math>\sum_{k=1}^n (2 \cdot k - 1 ) = 2 \cdot \frac{n \cdot (n+1)}{2} - n</math> | ||
+ | |||
+ | <math>\sum_{k=1}^n (2 \cdot k - 1 ) = n^2 + n - n</math> | ||
+ | |||
+ | <math>\sum_{k=1}^n (2 \cdot k - 1 ) = n^2</math> | ||
+ | |||
+ | ===Exemplo 4=== | ||
+ | Suprimindo um dos elementos do conjunto {<math>1, 2, . . . , n</math>}, a média aritmética dos elementos | ||
+ | |||
+ | 16,1. Determine o valor de n e qual foi o elemento suprimido do conjunto para o cálculo da média. | ||
+ | |||
+ | ==== Resolução ==== | ||
+ | <math>\sum_{k=1}^{n} k = 1+2+...+n= \frac{n \cdot (n+1)}{2}</math> | ||
+ | |||
+ | média aritmética é dada por : | ||
+ | |||
+ | <math>\frac {\frac{n \cdot (n+1)}{2}}{n} = \frac{n \cdot (n+1)}{2n} = \frac{1}{n}\sum_{k=1}^{n} k</math> | ||
+ | |||
+ | Pela propriedade da progressão aritmética | ||
+ | |||
+ | |||
+ | <math>\sum_{k=1}^{n-1} k = \frac{(n-1)n}{2}</math> | ||
+ | |||
+ | |||
+ | usando a função de calculo da média: | ||
+ | |||
+ | <math>\frac{(n-1)n}{2(n-1)} = \frac{n}{2} = 16,1</math> | ||
+ | |||
+ | <math>n = 32,2</math> | ||
+ | |||
+ | Substituindo <math>n</math> na equação: | ||
+ | |||
+ | <math>n-1 = 31,2</math> | ||
+ | |||
+ | <math>\sum_{k=1}^{n-1} k = 517,92</math> | ||
+ | |||
+ | <math>\sum_{k=1}^{n} k = 534,52</math> | ||
+ | |||
+ | Portanto o termo omitido foi: | ||
+ | |||
+ | <math>534,52 - 517,92 = 16,6</math> | ||
+ | |||
+ | ===Exemplo 5=== | ||
+ | Encontre uma fórmula fechada | ||
+ | |||
+ | <math>\sum_{k=1}^{n} k^3</math> | ||
+ | |||
+ | onde <math>n \in N \text{, com } n \geq 1</math> . | ||
+ | ==== Resolução ==== | ||
+ | <math>\sum_{k=1}^{n} k^3 = \sum_{k=1}^{n} kk^2 = \sum_{k=1}^{n} k \sum_{k=1}^{n} k^2</math> | ||
+ | |||
+ | Temos: | ||
+ | |||
+ | |||
+ | <pre>Incompleto | ||
+ | </pre> | ||
+ | |||
+ | ===Exemplo 6=== | ||
+ | Calcule a soma | ||
+ | |||
+ | <math>\sum_{k=1}^{n} k\cdot k!</math> | ||
+ | |||
+ | onde <math> n \in N \text{,com } n \geq 1</math> | ||
+ | |||
+ | ==== Resolução ==== | ||
+ | Separando o somatório: | ||
+ | |||
+ | <math>\sum_{k=1}^{n} k\cdot k! =\sum_{k=1}^{n} k\cdot \sum_{k=1}^{n} k! </math>/ | ||
+ | |||
+ | teremos que descobrir o | ||
+ | |||
+ | <math>\sum_{k=1}^{n} k!</math> | ||
+ | |||
+ | então | ||
+ | |||
+ | <math>\sum_{k=1}^{n} k!+(n+1)! = \sum_{k=0}^{n} (k!+1)! </math> | ||
+ | |||
+ | <math>1+\sum_{k=1}^{n} (k+1)! = 1+\sum_{k=1}^{n} (k+1)k!</math> | ||
+ | |||
+ | <pre>Incompleto | ||
+ | </pre> | ||
+ | |||
+ | ===Exemplo 7=== | ||
+ | Os números <math>\sqrt{2}, \quad \sqrt{3} \quad \text{e} \quad \sqrt{5}</math> | ||
+ | |||
+ | podem pertencer a uma mesma progressão aritmética? | ||
+ | |||
+ | ==== Resolução ==== | ||
+ | Assumindo uma PA <math>(\sqrt{1},\sqrt{2}, \sqrt{3}, \sqrt{4},\sqrt{5})</math> | ||
+ | |||
+ | os termos <math>\sqrt{2}, \quad \sqrt{3} \quad \text{e} \quad \sqrt{5}</math> | ||
+ | pertencem a essa progressão se pela propriedade da progressão aritmética a média aritmética dos termos da ponta de uma sequencia (a, b e c) | ||
+ | for igual a o termo do meio: | ||
+ | |||
+ | <math>\frac {a+c}{2}= b </math> | ||
+ | |||
+ | <math>\sqrt{3}\simeq1,7</math> | ||
+ | |||
+ | inserindo os valores na equação: | ||
+ | <math>\frac {\sqrt{1}+\sqrt{5}}{2}\simeq1,6 </math> | ||
+ | |||
+ | <math>\frac {\sqrt{2}+\sqrt{4}}{2}\simeq 1,7 </math> | ||
+ | |||
+ | <math>\frac {\sqrt{2}+\sqrt{5}}{2} \simeq 1,8 </math> | ||
+ | |||
+ | |||
+ | Portanto <math>\sqrt{2}, \quad \sqrt{3} \quad \text{e} \quad \sqrt{5}</math> não pertencem a mesma progressão aritmética. | ||
+ | |||
+ | |||
+ | ---- | ||
+ | |||
+ | == Provas de algumas propriedades == | ||
+ | ===Multiplicação por constante=== | ||
+ | <math> \sum_{n=s}^t C\cdot f(n) = C\cdot \sum_{n=s}^t f(n) </math>, onde C é uma constante. | ||
+ | |||
+ | ===== Passo base: s = t ===== | ||
+ | <math> \sum_{n=s}^t C\cdot f(n) = C\cdot f(n) </math>, pela definição de somatório. | ||
+ | |||
+ | ===== Passo indutivo: s < t ===== | ||
+ | |||
+ | Suponha que para um <math>k \in N, k > s</math> arbitrário: | ||
+ | |||
+ | <math> \sum_{n=s}^k C\cdot f(n) = C\cdot \sum_{n=s}^k f(n) </math> (Hipótese de indução) | ||
+ | |||
+ | |||
+ | Para <math>k+1</math>, assumindo o lado esquerdo da equação, temos: | ||
+ | |||
+ | <math> \sum_{n=s}^{k+1} C\cdot f(n) = C\cdot f(k+1) + \sum_{n=s}^k C\cdot f(n)</math>, pela definição de somatório. | ||
+ | |||
+ | |||
+ | Aplicando a HI: | ||
+ | |||
+ | <math> \sum_{n=s}^{k+1} C\cdot f(n) = C\cdot f(k+1) + C\cdot \sum_{n=s}^k f(n)</math> | ||
+ | |||
+ | |||
+ | Expandindo <math>k-s</math> vezes: | ||
+ | |||
+ | <math> \sum_{n=s}^{k+1} C\cdot f(n) = C\cdot (f(k+1)) + C\cdot (f(k) + f(k-1) + ... + f(s+1) + f(s))</math> | ||
+ | |||
+ | |||
+ | Colocando <math>C</math> em evidência: | ||
+ | |||
+ | <math> \sum_{n=s}^{k+1} C\cdot f(n) = C\cdot (f(k+1) + f(k) + f(k-1) + ... + f(s+1) + f(s))</math> | ||
+ | |||
+ | <math> \sum_{n=s}^{k+1} C\cdot f(n) = C\cdot \sum_{n=s}^{k+1} f(n) </math> | ||
+ | |||
+ | |||
+ | Portanto: | ||
+ | |||
+ | <math> \sum_{n=s}^t C\cdot f(n) = C\cdot \sum_{n=s}^t f(n) </math>, onde C é uma constante, <math>\forall s, t \in N</math>. | ||
+ | |||
+ | |||
+ | |||
+ | === Mudança de índices === | ||
+ | <math> \sum_{n=s}^t f(n) = \sum_{n=s+1}^{t+1} f(n-1) </math> | ||
+ | |||
+ | ===== Passo base: s = t ===== | ||
+ | <math> \sum_{n=s}^t f(n) = f(n) = \sum_{n=s+1}^{t+1} f(n-1) </math>, pela definição de somatório. | ||
+ | |||
+ | ===== Passo indutivo: s < t ===== | ||
+ | |||
+ | Suponha que para um <math>k \in N, k > s</math> arbitrário: | ||
+ | |||
+ | <math> \sum_{n=s}^k f(n) = \sum_{n=s+1}^{k+1} f(n-1) </math> (Hipótese de indução) | ||
+ | |||
+ | |||
+ | Para <math>k+1</math>, assumindo o lado esquerdo da equação, temos: | ||
+ | |||
+ | <math> \sum_{n=s}^{k+1} f(n) = f(k+1) + \sum_{n=s}^k f(n)</math>, pela definição de somatório. | ||
+ | |||
+ | |||
+ | Aplicando a HI: | ||
+ | |||
+ | <math> \sum_{n=s}^{k+1} f(n) = f(k+1) + \sum_{n=s+1}^{k+1} f(n-1)</math> | ||
+ | |||
+ | |||
+ | Expandindo <math>k-s</math> vezes: | ||
+ | |||
+ | <math> \sum_{n=s}^{k+1} f(n) = f(k+1) + f(k+1-1) + f(k-1) + ... + f(s-1) + f(s+1-1)</math> | ||
+ | |||
+ | <math> \sum_{n=s}^{k+1} f(n) = f(k+1) + f(k) + f(k-1) + ... + f(s-1) + f(s)</math> | ||
+ | |||
+ | <math> \sum_{n=s}^{k+1} f(n) = \sum_{n=s+1}^{k+2} f(n-1)</math>, uma vez que existem <math>k+2</math> termos. | ||
+ | |||
+ | |||
+ | Portanto: | ||
+ | |||
+ | <math> \sum_{n=s}^t f(n) = \sum_{n=s+1}^{t+1} f(n-1) \forall s, t \in N</math>. | ||
---- | ---- | ||
== Somatório em Linguagem Funcional == | == Somatório em Linguagem Funcional == | ||
− | ====Elixir==== | + | ====Elixir<ref>https://github.com/jaimerson/fmc-elixir-somatorio</ref>==== |
<pre> | <pre> | ||
defmodule FMC do | defmodule FMC do | ||
Line 82: | Line 334: | ||
==Referências== | ==Referências== | ||
<references /> | <references /> | ||
+ | ---- | ||
+ | ==Autores== | ||
+ | <pre>Jaimerson Araújo | ||
+ | |||
+ | Francleide Simão | ||
+ | </pre> |
Latest revision as of 09:55, 10 December 2015
Contents
Propriedades de Somatório
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^t C\cdot f(n) = C\cdot \sum_{n=s}^t f(n) } , onde C é uma constante.
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^t f(n) + \sum_{n=s}^{t} g(n) = \sum_{n=s}^t \left[f(n) + g(n)\right] }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^t f(n) - \sum_{n=s}^{t} g(n) = \sum_{n=s}^t \left[f(n) - g(n)\right] }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum^n_{i = m} f(i) = \sum^{n+p}_{i = m+p} f(i-p) }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum\limits_{n=s}^{t} j = \sum\limits_{n=1}^{t} j - \sum\limits_{n=1}^{s-1} j }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^j f(n) + \sum_{n=j+1}^t f(n) = \sum_{n=s}^t f(n)} , note que Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s \leq j \leq t }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=m}^n i = \frac{n(n+1)}{2} - \frac{m(m-1)}{2} = \frac{(n+1-m)(n+m)}{2},} progressão aritmética.
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=0}^n i = \sum_{i=1}^n i = \frac{n(n+1)}{2} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum\limits_{k=0}^{n-1}{2^k} = 2^n-1 }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=s}^m\sum_{j=t}^n {a_i}{c_j} = \sum_{i=s}^m a_i \cdot \sum_{j=t}^n c_j }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=0}^n i^3 = \left(\sum_{i=0}^n i\right)^2 }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=m}^{n-1} a^i = \frac{a^m-a^n}{1-a} (m < n) }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=0}^{n-1} a^i = \frac{1-a^n}{1-a} }
Principais representações
Soma simples
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=1}^{n} x_i = x_1+x_2+...+x_n}
Soma de quadrados
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=1}^{n} x_i^2 = x_1^2+x_2^2+...+x_n^2}
Quadrado da soma
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\sum_{i=1}^{n} x_i)^2 = (x_1+x_2+...+x_n)^2}
Soma de produtos
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=1}^{n} x_iy_i = x_1y_1+x_2y_2+...+x_ny_n}
Produtos das somas
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\sum_{i=1}^{n} x_i)(\sum_{j=1}^{m} y_j) = (x_1+x_2+...+x_n)(y_1+y_2+...+y_n)}
Aplicação das Propriedades
Alguns exemplos de aplicações das propriedades do somatório:
Exemplo 1
Utilize as propriedades de notação de somatório e, possivelmente, mudança de índice para deduzir que Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{j=1}^n (a_j - a_{j-1})} é igual a Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_n - a_0} , onde Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (a_i )_{i=0}^{\infty}} é uma sequência de números reais. Este tipo de soma é bastante conhecida em Matemática como soma telescópica.
Resolução
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{j=1}^n (a_j - a_{j-1}) = (a_n - a_{n-1}) + \sum_{j=1}^{n-1}}
Expandindo Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n}
vezes:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{j=1}^n (a_j - a_{j-1}) = (a_n - a_{n-1}) + (a_{n-1} - a_{n-2}) + ... + (a_2 - a_1) + (a_1 - a_0)}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{j=1}^n (a_j - a_{j-1}) = a_n - \cancel{a_{n-1}} + \cancel{a_{n-1}} - \cancel{a_{n-2}} + ... + \cancel{a_2} - \cancel{a_1} + \cancel{a_1} - a_0}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{j=1}^n (a_j - a_{j-1}) = a_n - a_0 }
Exemplo 2
O objetivo deste problema é encontrar uma fórmula fechada para
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^n (2 \cdot k - 1 )}
Para tal, note que
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k^2 - ( k - 1)^2 = 2k - 1}
Logo,
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^n \left ( k^2 - ( k - 1)^2 \right ) = \sum_{k=1}^n ( 2k - 1) }
Então, utilize o resultado do problema conhecido como "soma telescópia" do exemplo 1 para encontrar a fórmula
desejada.
Resolução
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^n 2 \cdot k - 1 = \sum_{k=1}^n k^2 - (k-1)^2}
Pela fórmula da soma telescópica
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^n 2 \cdot k - 1 = n^2 - 0^2 = n^2}
Exemplo 3
Utilize as propriedades de notação de somatório e os seus conhecimentos de soma de termos de uma PA para calcular
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^n (2 \cdot k - 1 )}
de forma distinta daquela usada no problema anterior. Qual das duas soluções lhe parece mais fácil?
Resolução
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^n (2 \cdot k - 1 ) = \sum_{k=1}^n 2 \cdot k - \sum_{k=1}^n 1}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^n (2 \cdot k - 1 ) = 2 \cdot \sum_{k=1}^n k - n}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^n (2 \cdot k - 1 ) = 2 \cdot \frac{n \cdot (n+1)}{2} - n}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^n (2 \cdot k - 1 ) = n^2 + n - n}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^n (2 \cdot k - 1 ) = n^2}
Exemplo 4
Suprimindo um dos elementos do conjunto {Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1, 2, . . . , n} }, a média aritmética dos elementos
16,1. Determine o valor de n e qual foi o elemento suprimido do conjunto para o cálculo da média.
Resolução
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^{n} k = 1+2+...+n= \frac{n \cdot (n+1)}{2}}
média aritmética é dada por :
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac {\frac{n \cdot (n+1)}{2}}{n} = \frac{n \cdot (n+1)}{2n} = \frac{1}{n}\sum_{k=1}^{n} k}
Pela propriedade da progressão aritmética
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^{n-1} k = \frac{(n-1)n}{2}}
usando a função de calculo da média:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{(n-1)n}{2(n-1)} = \frac{n}{2} = 16,1}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n = 32,2}
Substituindo Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} na equação:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n-1 = 31,2}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^{n-1} k = 517,92}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^{n} k = 534,52}
Portanto o termo omitido foi:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 534,52 - 517,92 = 16,6}
Exemplo 5
Encontre uma fórmula fechada
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^{n} k^3}
onde Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n \in N \text{, com } n \geq 1} .
Resolução
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^{n} k^3 = \sum_{k=1}^{n} kk^2 = \sum_{k=1}^{n} k \sum_{k=1}^{n} k^2}
Temos:
Incompleto
Exemplo 6
Calcule a soma
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^{n} k\cdot k!}
onde Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n \in N \text{,com } n \geq 1}
Resolução
Separando o somatório:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^{n} k\cdot k! =\sum_{k=1}^{n} k\cdot \sum_{k=1}^{n} k! } /
teremos que descobrir o
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^{n} k!}
então
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=1}^{n} k!+(n+1)! = \sum_{k=0}^{n} (k!+1)! }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1+\sum_{k=1}^{n} (k+1)! = 1+\sum_{k=1}^{n} (k+1)k!}
Incompleto
Exemplo 7
Os números Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{2}, \quad \sqrt{3} \quad \text{e} \quad \sqrt{5}}
podem pertencer a uma mesma progressão aritmética?
Resolução
Assumindo uma PA Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\sqrt{1},\sqrt{2}, \sqrt{3}, \sqrt{4},\sqrt{5})}
os termos Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{2}, \quad \sqrt{3} \quad \text{e} \quad \sqrt{5}} pertencem a essa progressão se pela propriedade da progressão aritmética a média aritmética dos termos da ponta de uma sequencia (a, b e c) for igual a o termo do meio:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac {a+c}{2}= b }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{3}\simeq1,7}
inserindo os valores na equação: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac {\sqrt{1}+\sqrt{5}}{2}\simeq1,6 }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac {\sqrt{2}+\sqrt{4}}{2}\simeq 1,7 }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac {\sqrt{2}+\sqrt{5}}{2} \simeq 1,8 }
Portanto Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{2}, \quad \sqrt{3} \quad \text{e} \quad \sqrt{5}}
não pertencem a mesma progressão aritmética.
Provas de algumas propriedades
Multiplicação por constante
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^t C\cdot f(n) = C\cdot \sum_{n=s}^t f(n) } , onde C é uma constante.
Passo base: s = t
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^t C\cdot f(n) = C\cdot f(n) } , pela definição de somatório.
Passo indutivo: s < t
Suponha que para um Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k \in N, k > s} arbitrário:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^k C\cdot f(n) = C\cdot \sum_{n=s}^k f(n) } (Hipótese de indução)
Para Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k+1}
, assumindo o lado esquerdo da equação, temos:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^{k+1} C\cdot f(n) = C\cdot f(k+1) + \sum_{n=s}^k C\cdot f(n)} , pela definição de somatório.
Aplicando a HI:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^{k+1} C\cdot f(n) = C\cdot f(k+1) + C\cdot \sum_{n=s}^k f(n)}
Expandindo Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k-s}
vezes:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^{k+1} C\cdot f(n) = C\cdot (f(k+1)) + C\cdot (f(k) + f(k-1) + ... + f(s+1) + f(s))}
Colocando Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C}
em evidência:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^{k+1} C\cdot f(n) = C\cdot (f(k+1) + f(k) + f(k-1) + ... + f(s+1) + f(s))}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^{k+1} C\cdot f(n) = C\cdot \sum_{n=s}^{k+1} f(n) }
Portanto:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^t C\cdot f(n) = C\cdot \sum_{n=s}^t f(n) } , onde C é uma constante, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \forall s, t \in N} .
Mudança de índices
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^t f(n) = \sum_{n=s+1}^{t+1} f(n-1) }
Passo base: s = t
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^t f(n) = f(n) = \sum_{n=s+1}^{t+1} f(n-1) } , pela definição de somatório.
Passo indutivo: s < t
Suponha que para um Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k \in N, k > s} arbitrário:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^k f(n) = \sum_{n=s+1}^{k+1} f(n-1) } (Hipótese de indução)
Para Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k+1}
, assumindo o lado esquerdo da equação, temos:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^{k+1} f(n) = f(k+1) + \sum_{n=s}^k f(n)} , pela definição de somatório.
Aplicando a HI:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^{k+1} f(n) = f(k+1) + \sum_{n=s+1}^{k+1} f(n-1)}
Expandindo Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k-s}
vezes:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^{k+1} f(n) = f(k+1) + f(k+1-1) + f(k-1) + ... + f(s-1) + f(s+1-1)}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^{k+1} f(n) = f(k+1) + f(k) + f(k-1) + ... + f(s-1) + f(s)}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^{k+1} f(n) = \sum_{n=s+1}^{k+2} f(n-1)} , uma vez que existem Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k+2} termos.
Portanto:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^t f(n) = \sum_{n=s+1}^{t+1} f(n-1) \forall s, t \in N} .
Somatório em Linguagem Funcional
Elixir[1]
defmodule FMC do def somatorio(start \\0, finish, callback) def somatorio(start, finish, callback) when start == finish do callback.(start) end def somatorio(start, finish, callback) do _somatorio(Enum.to_list(start..finish), callback) end defp _somatorio([], _), do: 0 defp _somatorio([head | tail], callback) do callback.(head) + _somatorio(tail, callback) end end
Referências
Autores
Jaimerson Araújo Francleide Simão