Difference between revisions of "Árvores"

From Logic Wiki
Jump to navigation Jump to search
m
m
Line 8: Line 8:
  
 
Primeiro, nós iremos discutir como representar, desenhar, e trabalhar com árvores usando o Maple. Especificamente, nós iremos descrever como representar e construir árvores e derivar características básicas sobre árvores em Maple. Nós iremos demonstrar como utilizar o Maple para desenhar árvores.Nós iremos demonstrar como resolver vários problemas, onde árvores fazem um papel importante usando Maple, como procurando e construindo códigos prefixos, usando uma implementação específica do algoritmo de Huffman. Nós iremos descrever como usar o  Maple para fazer diferentes métodos de percorrer árvore, onde o percurso é a visita dos vértices da árvore em uma ordem pré-definida. Então nós iremos discutir como esses percursos se relacionam com o tópico de organização. Continuamos mostrando como usar o Maple para criar spanning trees de grafos. Então, nós iremos mostrar como usar o Maple como resolver vários problemas utilizando backtracking. Finalmente, iremos mostrar como encontrar spanning trees  de peso mínimo de grafos ponderados usando Maple.
 
Primeiro, nós iremos discutir como representar, desenhar, e trabalhar com árvores usando o Maple. Especificamente, nós iremos descrever como representar e construir árvores e derivar características básicas sobre árvores em Maple. Nós iremos demonstrar como utilizar o Maple para desenhar árvores.Nós iremos demonstrar como resolver vários problemas, onde árvores fazem um papel importante usando Maple, como procurando e construindo códigos prefixos, usando uma implementação específica do algoritmo de Huffman. Nós iremos descrever como usar o  Maple para fazer diferentes métodos de percorrer árvore, onde o percurso é a visita dos vértices da árvore em uma ordem pré-definida. Então nós iremos discutir como esses percursos se relacionam com o tópico de organização. Continuamos mostrando como usar o Maple para criar spanning trees de grafos. Então, nós iremos mostrar como usar o Maple como resolver vários problemas utilizando backtracking. Finalmente, iremos mostrar como encontrar spanning trees  de peso mínimo de grafos ponderados usando Maple.
 +
  
 
==Introdução à Árvores==
 
==Introdução à Árvores==

Revision as of 15:55, 29 May 2016

Esse capítulo é dedicado aos aspectos computacionais do estudo das árvores. Árvores são um tipo específico de grafo, que são conectados grafos simples que não tem circuitos simples.

O código Maple nesse capítulo assume que você está usando uma versão atualizada do Maple Network Package. Essas melhorias afetam principalmente a exibição das árvores. Em particular, o comando draw foi atualizado para se entender como desenhar árvores com raiz. Para testar se você está utilizando a versão correta, carregue o pacote networks e rode a versão comando, como em:

with(networks): version();

Se esse comando não produzir uma descrição da versão, então vocês está utilizando a versão errada. Uma versão apropriada pode ser encontrada no site ftp: http://www.mhhe.com/math/advmath/rosen/r5/instructor/maple.html junto com instruções de instalação.

Primeiro, nós iremos discutir como representar, desenhar, e trabalhar com árvores usando o Maple. Especificamente, nós iremos descrever como representar e construir árvores e derivar características básicas sobre árvores em Maple. Nós iremos demonstrar como utilizar o Maple para desenhar árvores.Nós iremos demonstrar como resolver vários problemas, onde árvores fazem um papel importante usando Maple, como procurando e construindo códigos prefixos, usando uma implementação específica do algoritmo de Huffman. Nós iremos descrever como usar o Maple para fazer diferentes métodos de percorrer árvore, onde o percurso é a visita dos vértices da árvore em uma ordem pré-definida. Então nós iremos discutir como esses percursos se relacionam com o tópico de organização. Continuamos mostrando como usar o Maple para criar spanning trees de grafos. Então, nós iremos mostrar como usar o Maple como resolver vários problemas utilizando backtracking. Finalmente, iremos mostrar como encontrar spanning trees de peso mínimo de grafos ponderados usando Maple.


Introdução à Árvores

Para começar, iremos demonstrar como construir árvores em Maple. Dada uma árvore sem raiz, nós podemos construir essa árvore em Maple assim como faríamos com qualquer grafo. Nós também iremos dar um procedure que usa algumas capacidades embutidas do Maple que determinam se um grafo específico é uma árvore.

Antes de entrar na implementação, há dois pontos importantes que devem ser mencionados. Primeiro, notamos que o Maple difere da terminologia de texto, no senso que o Maple refere-se a simples ciclos, quando o texto se refere a simples circuitos. O segundo ponto que vale mencionar é de que uma árvore sem raiz é um grafo simples que não tem ciclos simples. Estruturalmente falando, uma árvore com raiz é exatamente a mesma coisa que uma árvore sem raiz, com a propriedade adicional de que há um vértice específico chamado de raiz, que é visto como o ponto inicial de uma árvore. Em termos de implementação Maple, representamos árvores sem raiz como grafos, e criamos árvores sem raiz a partir de árvores sem raiz utilizando comandos Maple como spantree, que serão abordados posteriormente, especificando um nó desejado para uma árvore sem nó.

Outro tipo importante de árvore é a árvore ordenada, que é uma árvore com raiz onde os filhos de um vértice ordenados de alguma maneira como 1st, 2nd,...,m-th filhos se houverem m filhos de um dado vértice. Nós iremos fazer uso do peso dos vértices para determinar a ordem dos filhos de um vértice específico. Esse tipo de árvore irá aparecer posteriormente, mas é importante distinguir árvores sem raiz, com raiz e desordenadas, e árvores com raiz e ordenadas.

Como primeiro exemplo, iremos discutir árvores sem raiz. Criamos uma árvore exatamente da mesma maneira que criamos um grafo, usando o pacote networks do Maple. Como nosso primeiro exemplo, iremos criar uma árvore simples em 4 vértices.

with(networks):
new(T1): addvertex(a,b,c,d,f,g,T1):
addedge(a,b,a,c,a,d,b,f,b,g, T1):
draw(Tree(a),T1);

Suponha que fomos dados um grafo e se foi pedido para determinar se ele é ou não uma árvore. Pela definição de árvores, precisamos verificar as 3 seguintes propriedades:

1.O grafo é conectado.

2. O grafo é simples.

3. O grafo não tem ciclos.

Usando Maple, essas propriedades são facilmente verificadas. Em particular, podemos determinar se um grafo é conectado em Maple usando o comandoscomponents, que retorna uma coleção de conjuntos de vértices, onde cada conjunto nessa coleção contém os vértices de um componente conexo do grafo. Podemos determinar se um grafo é simples usando o comando Maple gsimp, que retorna a árvore simples por baixo de um multigrafo, e então comparando o número de arestas da árvore por baixo do grafo original. Isso nos leva até o procedure IsSimple.

IsSimple := proc(G::graph) local H;
    H := networks[duplicate](G); 
    if nops(edges(gsimp(H))) = nops(edges(G)) then true
    else false fi;
end:

Note que não devemos simplificar G por si só, pois tal simplificação é um processo irreversível.

Para testar conectividade, utilizamos o procedure IsConnected

IsConnected := proc(G::graph) 
evalb(nops(components(G)) = 1) end:

Podemos determinar se um grafo tem ou não ciclos utilizando o comando cyclebase do Maple que retorna um conjunto de ciclos, ou circuitos simples, que formam uma base de todos os ciclos (circuitos simples) no grafo dado; se o cyclebase não tiver ciclos, o grafo não tem ciclos. Isso, junto com os dois testes anteriores pode ser usado para testar se um grafo é uma árvore.

IsTree:=proc(G::graph)
  if not (IsConnected(G) and IsSimple(G)) then 
    RETURN(false); fi;
  if cyclebase(G) = {} then RETURN(true);
  else RETURN(false); fi;
end:

Se você preferir, pode substituir o teste cycle base test nesse procedure por um que verifica se o número de arestas é um a menos que o número de vértices.

Agora estamos prontos para usar o procedure IsTree para determinar se alguns grafos particulares são árvores;

IsTree(T1);  IsTree(complete(3));