Last 5 Pages Viewed: Exemplo 4.2.4 - Solução » Exemplo 4.1.5 - Solução » Somatório e Produtório » Special:Log » Somatório e Produtório

Difference between revisions of "Somatório e Produtório"

From Logic Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 +
O somatório representa somas com <math>n</math> termos, para sua representação utiliza-se o símbolo sigma <math>\sum_{n}{i=0} I </math> onde i representa o termo inicial da soma e n o termo final da soma.
 +
Ele geralmente é utilizado na resolução de problemas de recorrência.
 +
 +
 
== Propriedades de Somatório ==
 
== Propriedades de Somatório ==
  

Revision as of 03:15, 10 December 2015

O somatório representa somas com termos, para sua representação utiliza-se o símbolo sigma onde i representa o termo inicial da soma e n o termo final da soma. Ele geralmente é utilizado na resolução de problemas de recorrência.


Propriedades de Somatório

, onde C é uma constante.

, note que

progressão aritmética.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum\limits_{k=0}^{n-1}{2^k} = 2^n-1 }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=m}^{n-1} a^i = \frac{a^m-a^n}{1-a} (m < n) }



Principais representações

Soma simples

Soma de quadrados

Quadrado da soma

Soma de produtos

Produtos das somas


Aplicação das Propriedades

Alguns exemplos de aplicações das propriedades do somatório:

Exemplo 1

Utilize as propriedades de notação de somatório e, possivelmente, mudança de índice para deduzir que é igual a , onde é uma sequência de números reais. Este tipo de soma é bastante conhecida em Matemática como soma telescópica.

Resolução


Expandindo vezes:

Exemplo 2

O objetivo deste problema é encontrar uma fórmula fechada para


Para tal, note que


Logo,


Então, utilize o resultado do problema conhecido como "soma telescópia" do exemplo 1 para encontrar a fórmula desejada.

Resolução


Pela fórmula da soma telescópica

Exemplo 3

Utilize as propriedades de notação de somatório e os seus conhecimentos de soma de termos de uma PA para calcular

de forma distinta daquela usada no problema anterior. Qual das duas soluções lhe parece mais fácil?

Resolução

Exemplo 4

Suprimindo um dos elementos do conjunto {}, a média aritmética dos elementos

16,1. Determine o valor de n e qual foi o elemento suprimido do conjunto para o cálculo da média.

Resolução

média aritmética é dada por :

média aritmética de



usando a função de calculo da média:

Substituindo na equação:

Portanto o termo omitido foi:

Exemplo 5

Encontre uma fórmula fechada

onde .

Resolução

Temos:

Incompleto

Exemplo 6

Calcule a soma

onde

Resolução

Separando o somatório:

Temos:

e teremos que descobrir o

então

Incompleto

Exemplo 7

Os números

podem pertencer a uma mesma progressão aritmética?

Resolução

Assumindo uma PA

os termos pertencem a essa progressão se pela propriedade da progressão aritmética a média aritmética dos termos da ponta de uma sequencia (a, b e c) for igual a o termo do meio:


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac {\sqrt{1}+\sqrt{5}}{2}= 1,618033988749895 }

Portanto não pertencem a mesma progressão aritmética.



Provas de algumas propriedades

Multiplicação por constante

, onde C é uma constante.

Passo base: s = t

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^t C\cdot f(n) = C\cdot f(n) } , pela definição de somatório.

Passo indutivo: s < t

Suponha que para um arbitrário:

(Hipótese de indução)


Para , assumindo o lado esquerdo da equação, temos:

, pela definição de somatório.


Aplicando a HI:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^{k+1} C\cdot f(n) = C\cdot f(k+1) + C\cdot \sum_{n=s}^k f(n)}


Expandindo vezes:


Colocando em evidência:


Portanto:

, onde C é uma constante, .


Mudança de índices

Passo base: s = t

, pela definição de somatório.

Passo indutivo: s < t

Suponha que para um arbitrário:

(Hipótese de indução)


Para , assumindo o lado esquerdo da equação, temos:

, pela definição de somatório.


Aplicando a HI:


Expandindo vezes:

, uma vez que existem termos.


Portanto:

.


Somatório em Linguagem Funcional

Elixir[1]

defmodule FMC do
  def somatorio(start \\0, finish, callback)

  def somatorio(start, finish, callback) when start == finish do
    callback.(start)
  end

  def somatorio(start, finish, callback) do
    _somatorio(Enum.to_list(start..finish), callback)
  end

  defp _somatorio([], _), do: 0
  defp _somatorio([head | tail], callback) do
    callback.(head) + _somatorio(tail, callback)
  end
end

Referências


Autores

Jaimerson Araújo

Francleide Simão