===Exemplos adicionais relativas a Seção 4.3===
'''EXEMPLO (E1, pág 321)'''
Uma classe tem 30 alunos matriculados. De quantas maneiras pode-se:
'''Solução:'''
(a) Precisamos preencher a seguinte linha de quatro espaços em branco: 30 x 29 x 28 x 27. Este é o número de permutações de 4 a partir de um conjunto de 30, que é P( 30 ,4 );
'''EXEMPLO (E2, página 324)'''
Um certo tipo de botão de uma fechadura de porta exige que você insira um código antes que a fechadura abra.O bloqueio tem 5 botoes, numerados de 1 a 5.O bloqueio é programado para reconhecer seis códigos de 4 dígitos diferentes, podendo repetir os algarismos de cada código. Quantos conjuntos diferentes de códigos reconhecíveis existem?
'''Solução:'''
Há 5⁴=625 possíveis códigos com quatro dígitos. Portanto, há C(625,6) conjuntos diferentes de códigos reconhecíveis.
EXEMPLO (E3, página 324)
'''Solução:'''
Note que, existem 10 inteiros ímpares e 9 inteiros pares em S. Os subconjuntos a serem contados deve consistir de k inteiros ímpares e k inteiros pares, onde k=1,2,3,...,9. Portanto, pela regra do produto, o número de cada tipo é C(10, k) x C(9,k). Portanto, pela regra da soma, a resposta é C(10, k) x C(9,k) + C(10, k) x C(9,k)
'''EXEMPLO (E6, page 324)'''
Encontre maneiras de dividir um baralho de 52 cartas, em:
'''Solução:'''
a) Cada pilha deve conter 52/4 = 13 cartas. Na sequencia, empilharemos A,em seguida B, depois C, e finalmente D. Então teremos C(52,13) maneiras de obter a pilha de A, C(39,13) maneiras de obter a pilha de B, C(26,13) maneiras de obter a pilha de C, e C(13,13)=1 maneiras de obter a pilha de D.Portanto pela regra do produto,teremos :
C(52,13) x C(39,13) x C(26,13) x C(13,13) = <math>\frac{52!}{13!.29!} .\frac{39!}{13!.26!} .\frac{26!}{13!.13!} .\frac{13!}{13!.0!} = \frac{52!}{(13!)^4} </math>
'''Solução:'''
a) Há 13 numeros impares; podemos escolher dois em C(13,2) maneiras.Há 12 numeros pares; podemos escolher 3 em C(12,3) maneiras. Usando a regra do produto para encontrar o número de subconjuntos T, temos subconjuntos.