Open main menu

Solução:

Usa-se o teorema binomial. Em seguida, várias regras exponenciais para simplificar os termos.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x^2-\frac{1}{x} )^8 = \sum_{i=0}^{8} \binom{8}{i} (x^2)^i(\frac{-1}{x} )^{8-i}} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \sum_{i=0}^{8} \binom{8}{i} \frac{x^{2i}(-1)^{8-i}}{x^{8-i}}} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \sum_{i=0}^{8} \binom{8}{i} x^{3i-8}(-1)^{8-i}} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = x^{-8}-8x^{-5}+28x^{-2}-56x^{1}+70x^{4}-56x^{7}+28x^{10}-8x^{13}+x^{16}} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \frac{1}{x^8} -\frac{8}{x^5} +\frac{28}{x^2} -56x^{1}+70x^{4}-56x^{7}+28x^{10}-8x^{13}+x^{16}}