Open main menu

Changes

3 bytes added ,  13:20, 9 December 2015
=====3. Encontre o número de resultados possíveis em uma partida de dois times quando o vencedor é o primeiro time a ganhar 5 de 9, 6 de 11, 7 de 13 ou 8 de 15 jogos.=====
Solução
Nossa solução vai usar o procedimento Maple chamado “permute” ''permute'' para computar o número total de maneiras que um torneio de jogos pode ser jogado. Vamos começar construindo duas listas que observa como cada um dos dois times pode ganhar. Nós iremos atribuir as duas do time 1 vencendo o torneio sem nenhuma derrota, e o time 2 vencendo o torneio sem nenhuma derrota. A cada iteração do loop principal do algoritmo, vamos computar as permutações possíveis de jogos a serem jogados, notando que a ordem de vitórias é importante para nós. Após essas permutações serem calculadas, nós vamos aumentar o número de jogos que o torneio dura (ou seja, permite o eventual time perdedor do torneio a vencer um jogo adicional). Isso é equivalente a usar um diagrama de árvore para computar os resultados possíveis. O loop externo (''while'') corresponde ao nível de vértices na árvore, e o loop interior (for) itera sobre todos os jogos naquele nível.
A implementação Maple dessa descrição é mostrada abaixo.
'''''Tournaments:=proc(games::integer) '''''
'''''nops(Tournaments(7)); '''''
Ao leitor é deixado explorar os casos restantes, e conjecturar uma fórmula no caso geral.
 
=====4. Nós queremos olhar para os coeficientes binomiais <math>C(2n, n)</math>. Especificamente, para muitos exemplos, nós queremos determinar se <math>C(2n, n)</math> é divisível pelo quadrado de um primo, e se o maior expoente na fatorização do primo cresce sem limites enquanto “n” cresce.=====
Solução
90

edits