Contagem

From Logic Wiki
Jump to navigation Jump to search

A contagem é fundamental para o estudo da matemática discreta, a complexidade de algoritmos, combinatórios, e alguns ramos da álgebra tais como a teoria do grupo finito. Este capítulo apresenta uma variedade de técnicas que estão disponíveis no Maple para contar uma coleção diversa de objetos discretos, incluindo combinações e permutações de conjuntos finitos. Objetos podem ser contados usando fórmulas ou outros algoritmos, ou listando-os e observando diretamente o tamanho da lista. A última abordagem por um número de procedimentos Maple que pode ser usado para gerar estruturas combinatórias.

A maioria dos procedimentos Maple relevantes a este capítulo pertence em um ou dois pacotes. O pacote “combinat” é a parte padrão da versão da biblioteca 3Maple.

Um novo pacote “combstruct” está disponível como uma biblioteca compartilhada para MapleV, versão 3, e é um pacote padrão da versão 4. Você pode acessar os serviços oferecidos por qualquer um desses pacotes usando o comando “with” para carregá-lo na sua sessão Maple. (Se você está usando Maple V, versão 3, você também deve colocar with(share) antes de digitar with(combstruct)).

É útil saber que o pacote combstruct, enquanto provê uma grande variedade de procedimentos, organiza algumas das funções básicas em grupos relacionados a um objeto combinatório particular (como, por exemplo, combinações ou partições). Para muitos tipos de objetos combinatórios, existem procedimentos Maple para fazer as seguintes operações.

  1. Você pode construir todos os objetos daquele tipo associado a um inteiro dado. Ao procedimento para fazer isso é geralmente dado um nome refletindo o tipo de objeto. (Por exemplo, “permute” and “partitions”.)
  2. Você pode contar todos os objetos daquele tipo associado a um inteiro dado. Aqueles procedimentos geralmente começão com a string “numb” e são completados por uma abreviaçãodo tipo de objeto sendo contado. (Por exemplo, “numbperm” e “numbpart”.)
  3. Você pode gerar um objeto aleatório daquele tipo associado a um inteiro dado. Uma abreviação do tipo de objeto sendo gerado, prefixado com a string “rand” é como essas rotinas são normalmente nomeadas. (Por exemplo, “randperm” e “randpart”.)


Claro, também existem muitas outras funções que não se encaixam neste esquema.

Contents

1. Funções Maple relevantes

O pacote “combinat” contém muitas funções pertinentes à contagem e geração de estruturas combinatórias. A lista de funções neste pacote é:

with(combinat);

Existe outro pacote, “combstruct”, disponível no Maple V, versão 4, que também lida com estruturas combinatórias. A maior parte do que este pacote faz está além do escopo deste livro, mas algumas de suas funções expandem o que o pacote “combinat” faz. O pacote “combstruct” fornece funções “interstructs”.

count Para contar o número de objetos de um dado tamanho
draw Para gerar um objeto aleatório de um dado tamanho
allstructs Para gerar todos os objetos de um dado tamanho
iterstructs Para gerar a “próxima” estrutura de um dado tamanho

As estruturas relevantes que “combstruct” pode lidar são permutação, combinação/subconjunto, partição.

Para acessar os serviços fornecidos pelo pacote “combstruct”, digite:

with(combstruct);

Se você estiver usando a versão 3 do Maple, primeiramente você terá que utilizar o comando “with(share)”, já que o pacote “combstruct” é parte da biblioteca na versão 3.

As funções no pacote “combinat” para combinações são “numbcomb”, “choose”, e “randcomb”. Este é o número de formas de escolher duas frutas a partir de uma maçã, uma laranja e uma pera.

numbcomb([apple, orange, pear], 2);

Aqui estão as possíveis escolhas:

choose([apple, orange, pear], 2);

A função “numbcomb” conta o número de combinações (ou r-combinações) de um conjunto. A função “choose” lista as combinações. Portanto sempre existirão elementos “numbcomb” listados por “choose”.

nops(%);

E se tivermos duas maçãs e nenhuma pêra (um exemplo com elementos indistinguíveis):

numbcomb([apple, apple, orange],2);

Com as escolhas:

choose([apple, apple, orange],2);

Se nós não fornecemos o segundo argumento, todas as combinações possíveis de todos os tamanhos possíveis são consideradas.

numbcomb([apple, apple, orange]);
choose([apple, apple, orange]);

Nós também podemos escolher combinações aleatórias.

randcomb([chocolate, vanilla, cookiedough],2);
randcomb(5,3);

Neste exemplo, o 5 representa o conjunto .

Usando combstruct, nós resolveríamos os problemas acima da seguinte forma:

count(Combination([apple,orange,pear]),size=2);
allstructs(Combination([apple,orange,pear]), size=2);
draw(Combination([chocolate,vanilla,cookiedough]),size=2);

Coeficientes binomiais podem ser calculados tanto chamando a função numbcomb como um inteiro como primeiro argumento,

numbcomb(10,5);

ou nós podemos calcular , usando a função binomial. Então nós resolvemos o exemplo 7 na seção 4.3 da seguinte forma:

binomial(10,5);

Quando n e r são inteiros não negativos e , binomial e numbcomb se comportam de forma idêntica. O procedimento binomial é mais geral, e expande a definição dos coeficientes binomiais. Não vamos discutir seu uso mais geral aqui.

2. Mais funções combinatórias

Nesta seção, vamos discutir algumas funções combinatórias, úteis na contagem, que surgem como coeficientes de certos polinomiais.

2.1. Coeficientes binomiais

Os coeficientes binomiais que são coeficientes do polinomial quando este é expandido.

for n from 1 to 7 do
sort(expand((a + b)^n));
od;'

Esses números podem ser acessados diretamente no Maple usando a função “binomial” da biblioteca Maple.

for n from 1 to 7 do
seq(binomial(n, k), k = 0..n);
od;

O valor do binomial(n, k) é o coeficiente do termo binomial (que é igual ao coeficiente de ) na expansão de . Dados argumentos numéricos, “binomial” resulta em um número.

binomial(100,53);

Entretanto, se é dado um argumento simbólico, “binomial” retorna indeterminado.

n := 'n': # clear values
k := 'k': # from n and k
binomial(n, 9);

Você pode expressar isso como uma função racional da variável “n” chamando “expand”.

expand(%);

Entretanto, isso funciona apenas se no máximo um dos argumentos for simbólico.

binomial(n, k);
expand(%);

Para determinar a definição, nos termos de fatoriais, você pode usar o comando multifacetado “convert”.

convert(binomial(n, k), factorial);

O procedimento “convert” é uma utilidade de conversão de propósito geral que pode ser usado para transformar expressões de uma forma para outra, equivalente. Aqui, transforma uma instrução simbólica envolvendo a chamada do procedimento “binomial”, para uma equivalente expressada usando fatoriais. Devido a “convert” aceitar uma grande variedade de tipos de argumentos, sua documentação é espalhada sobre muitas das páginas de ajuda online.Mas um bom lugar para começar a encontrar mais sobre “convert”, é a página principal de ajuda para este comando, acessada digitando “?convert”. Essa facilidade pode ser usada para provar identidades combinatórias envolvendo os coeficientes binomiais. Um pouco de cuidado é necessário, entretanto, para levar em conta o grau de avaliação que é realizado a cada passo, deixa coisas que são iguais não serem reconhecidas como tais. Por exemplo, essa identidade famosa pode ser provada da seguinte forma.

left := binomial(n, k);
right := binomial(n, n - k);

Queremos provar a esquerda e a direita são iguais. Note que

evalb(left = right);

isso ocorre porque esquerda e direita foram avaliadas de forma insuficiente até o momento. Para superar esta falta de reconhecimento, nós usamos “convert”.

left := convert(left, factorial);
right := convert(right, factorial);
evalb(left = right);

Geralmente existe uma certa quantidade de adivinhação envolvida em coagir expressões simbólicas para a forma que é útil para um dado problema. Maple é designado para permitir que você facilmente experimente com expressões, para que você possa descobrir a forma certa para uma aplicação particular.

2.2. Coeficientes multinomiais

Para computar o números de permutações de um conjunto finito em que alguns membros são indistinguíveis do outros (tal conjunto é geralmente chamado um multiset), Maple fornece o procedimento multinomial no pacote combinat. Ele calcula os coeficientes multinomiais, isto é, números da forma em cada existem inteiros não negativos cuja soma é n. O primeiro argumento para multinomial é o inteiro n, enquanto os argumentos restantes são os números do denominador.

Por exemplo, permita-nos computar o número de strings distintas obtidas pela permutação das letras da palavra “MISSISSIPPI” (um exemplo clássico). Aqui existe 1M, e existem 4 Is, 4 Ss, e 2 Ps. Isso dá um total de 11 caracteres. Portanto, o número de strings distintas é

combinat[multinomial](11, 1, 4, 4, 2);

Observe que o primeiro argumento deve ser a soma dos argumentos restantes; caso contrário um erro é indicado.

combinat[multinomial](11, 1, 4, 4, 3);

O coeficiente multinomial exibido acima é chamado coeficiente porque ele é o coeficiente do multinomial na expansão do polinomial . Nós podemos ver alguns exemplos disso usando Maple. (Usaremos as variáveis a, b, c, e assim por diante, já que são mais fáceis de se ler que x1, x2, x3, etc.)

p := (a + b + c)^5;
p := expand(p);

Existe uma função “coeff” que extrai o coeficiente de uma variável num polinomial.

coeff(x^3 - 5*x^2 + 2, x^2);
coeff(x^3 - 5*x^2 + 2, x);

Entretanto, isso apenas funciona com polinomiais invariáveis. Você pode, todavia, acessar os multinomiais individuais em um polinomial multivariado, usando o comando “op”.

op(3, p);
op(p);

Isso, infelizmente, depende da ordenação dos multinomiais no polinomial p fazendo isso impossível de prever qual dentro dos multinomiais em p será extraída. Para contornar este problema, use o comando sort primeiro.

p := sort(p);
op(3, p);
terms := [op(p)];

Os multinomiais são ordenados lexicograficamente . Para reparar a deficiência em coeff que o impede de manusear polinomiais multivariados, nós podemos escrever nossa própria rotina, mcoeff que faz esse trabalho para nós. Já que coeff é implementada no kernel Maple, não é possível para um usuário redefinir seu comportamento, então é necessária uma rotina separada. Para simplicidade, nosso procedimento mcoeff vai apenas lidar com polinomiais com coeficientes numéricos. O algoritmo usado aqui é o seguinte:

  1. insira um polinomial “p” e um termo multinomial term.
  2. processe p da seguinte:
    1. ordene p em q
    2. crie uma lista r de termos multinomiais em q.
    3. crie um multiset m consistido de multinomiais em q com multiplicidade igual ao coeficiente. (Note que isso não é um multiset verdade, como o coeficiente pode ser negativo ou não integral.)
  3. procure a lista m para uma entrada combinando term e, se encontrada, retorne o coeficiente. Caso contrário, retorne 0.


Aqui, então, está o código Maple para “mcoeff”.

mcoeff := proc(p::polynom, term::polynom)
  local m, # list of multinomials
        t, # index into m
        x, # dummy variable
        q, # sorted input
        r; # multiset of multinomials and coefficients
  q := sort(p); r := [op(q)];
  m := map(x -> [coeffs(x), x / coeffs(x)], r);
  for t in m do
    if term = op(2, t) then RETURN(op(1, t)); fi;
  od;
  RETURN(0);
end:

Por exemplo, para alocar o coeficiente de no polinomial multivariado , podemos usar mcoeff da seguinte maneira:

p := (a + b + c)^5;
p := expand(p);
mcoeff(p, a^2 * b^3);

Solicitar o coeficiente de um multinomial que não esteja no polinomial resulta em zero.

mcoeff(p, x^5);

Se a entrada polinomial p é um polinomial em uma única variável, então a chamada mcoeff(p, x^n) é equivalente à chama coeff(p, x^n) ou coeff(p, x, n). (A sintaxe da chamada no último estilo não é suportada por mcoeff.)

mcoeff(x^3 - 2*x^2 + 1, x^2);
coeff(x^3 - 2*x^2 + 1, x^2);
coeff(x^3 - 2*x^2 + 1, x, 2);

A rotina mcoeff fornece outros meios em que nós podemos determinar coeficientes multinomiais. Por exemplo:

with(combinat):
multinomial(6, 1, 2, 3);
p := expand((a + b + c)^6);
mcoeff(p, a * b^2 * c^3);


2.3. Números Stirling

Outro conjunto combinatório de números significante que surge como o conjunto de coeficientes de polinomiais especiais é o conjunto de números Stirling. O polinomial Stirling de grau “n” é definido por:

Quando expandido, tem a forma:

Os coeficientes , para , são chamados de números Stirling (do primeiro tipo).

Podemos usar Maple para gerar os polinomiais Stirling da seguinte forma.

n := 'n'; i := 'i';
S(n) := product(x - i, i = 0..n-1);

Essa expressão Maple insiste em exibir com o uso da função Gamma .

A função Gamma é uma extensão contínua da função fatorial para números reais. Para um inteiro não negativo n, nós temos . Mas, para valores específicos de n, podemos coagir Maple a representar os polinomiais de Stirling como polinomiais, usando simplify.

subs(n = 9, S(n));
simplify(%);
expand(%);
sort(%);
coeffs(%);
[%];

Portanto, nós temos uma lista de números Stirling , para . Você pode acessar os números de Stirling diretamente no Maple, usando a função stirling1 no pacote combinat.

with(combinat):
for n from 1 to 7 do
  seq(stirling1(n,i), i = 1..n);
od;

Existem alguns padrões interessantes no triângulo resultante. Tente computar mais números de Stirling e veja se você pode fazer quaisquer conjecturas sobre os padrões que você vê.

3. Permutações

Nós já mostramos como contar e gerar combinações usando Maple. Podemos agora introduzir recursos análogos do Maple para trabalhar com permutações. As funções Maple correspondentes para permutações são “numbperm”, “permute” e “randperm”. Já que todas estão no pacotes “combinat”, devem ser carregadas antes de serem usadas.

with(combinat):
numbperm([S,U,C,C,E,S,S]);
permute([a,b,c]);
randperm([S,U,C,C,E,S,S]);
randperm(5);

Usando o pacote “combstruct”, esses exemplos são feitos da seguinte forma:

with(combstruct):
count(Permutation([S,U,C,C,E,S,S]));
allstructs(Permutation([a,b,c]));
draw(Permutation(5));

A função “subsets” permite gerar todos os subconjuntos de um conjunto dado. Já que os subconjuntos e combinações são apenas diferentes nomes para a mesma coisa, você pode usar essa função para gerar combinações. A função “subsets” retorna uma tabela que contém duas entradas. Uma é chamada “nextvalue”, e é um procedimento para gerar a próxima combinação, e a outra é “finished”, uma flag true/flase que informa quando todas elas foram geradas.

S := combinat[subsets](a,b):
while not S[finished] do
  S[nextvalue]();
od;

Usando “combstruct”, uma faz a mesma coisa usando a função “iterstructs”. O procedimento “iterstructs” também retorna uma tabela, mas dessa vez usa as funções “next” e “finished” para iterar.

S := iterstructs(Subset(a,b)):
while not finished(S) do
  nextstruct(S);
od;

Usando “iterstructs”, podemos também iterar sobre permutações e tradições. Em adição, nós podemos especificar que tamanho de objeto nós queremos ver.

P := iterstructs(Permutation([a,b,b]), size=2):
while not finished(P) do
  nextstruct(P);
od;

Pelo fatos das função de permutação Maple poderem resolver problemas de permutação com elementos indistinguíveis tão facilmente quanto sem elementos indistinguíveis, alguns dos exercícios do texto se tornam triviais. Por exemplo, exercício 266 pergunta quantas strings diferentes podem ser formadas com as letras em MISSISSIPPI usando todas as letras. A solução pode ser encontrada em um passo: numbperm([M,I,S,S,I,S,S,I,P,P,I]); A questão 299 é similar, mas envolve alguns passos extras. Ela pergunta quantas strings diferentes podem ser feitas a partir das letras em ORONO, usando uma ou todas as letras. Para achar a solução, primeiramente calculamos o número de 1-permutações, depois com 2-permutações, etc.

total := 0:
for i from 1 to 5 do
     total := total + numbperm([O,R,O,N,O],i);
od:
total;

Existem 633 strings possíveis usando uma ou todas as letras em ORONO. 644 se nós contarmos as string com 0 letras. numbperm([O,R,O,N,O],0); Usando o pacote “combstruct”, nós podemos achar a resposta em um passo.

with(combstruct):
count(Permutation([O,R,O,N,O]), size='allsizes');

Entretanto, a maior parte dessa sessão envolve pensar e entender a questão. Maple pode ajudar a calcular os números de permutações e combinações, mas cabe a você decidir que valores você precisa calcular para encontrar a resposta.

3.1. Partições de Inteiros

Também existem funções para fazer partições de inteiros. (Uma partição de inteiro é um modo de escrever um inteiro n como a soma de inteiros positivos, onde ordem não importa. Então é uma partição de inteiro do 5.) Junto ao numbpart, partition e randpart, existem funções para gerar partições, uma por vez, baseada em uma dada ordem canônica. Todas estas funções são parte do pacote combinat que deve, consequentemente, ser carregado antes de você acessá-las.

with(combinat):

O número de partições de um dado inteiro pode ser contado usando o procedimento “numbpart”.

seq(numbpart(i), i = 1..20);

As partições de um inteiro podem ser computadas usando a função “partition”.

partition(5);

Isso constrói as partições de seu argumento como uma lista de listas, cada sublista representando uma partição.

Como seu nome sugere, randpart simplesmente cria uma partição aleatória de um inteiro. randpart(20); Maple provê funções especiais para gerar a sequencia de todas as partições de um inteiro dado. Portanto, nós temos as rotinas firstpart, nextpart, prevpart e lastpart.

firstpart(4);
nextpart(%);
nextpart(%);
prevpart(%);
nextpart(%%);
lastpart(4);

4. Probabilidade discreta

Para encontrar a probabilidade de um evento numa amostra de espaço finita, calcula-se o número de vezes que o evento ocorre, e divide-se pelo número total de resultados possíveis (o tamanho do espaço de amostra).

Como no exemplo 4, seção 4.4, nós calculamos a probabilidade de ganhar na loteria, onde precisamos escolher 6 números corretamente de 40 números possíveis. O número total de maneiras de escolher 6 números é:

numbcomb(40,6);

e existe uma combinação vencedora. Portanto a probabilidade é

1/%;

a qual nós podemos ver como uma aproximação de um número real usando a função “evalf” - avaliação como um número de ponto flutuante.

evalf(%);

Nós também podemos forçar uma aproximação decimal do resultado usando 1.0, ou simplesmente 1., para mostrar que nós desejamos trabalhar com decimais em vez da representação racional exata. Por exemplo, se precisarmos escolher de 50 números, a probabilidade é:

1./numbcomb(50,6);

Para outro exemplo do uso do Maple no estudo da probabilidade discreta, permita-nos usar Maple para verificar a asserção no exemplo 144 na página 278 do texto. A afirmação é que o valor esperado do número de sucessos para “n” tentativas Bernoulli, cada uma com a probabilidade “p” de sucesso, é “np”. Nós usaremos “EV” para denotar o valor esperado em Maple. (Nós não podemos usar “E” porque aquele símbolo é reservado para a base do logaritmo natural.) Nós sabemos que

p(X=k) := binomial(n, k) * p^k * (1 - p)^(n - k);

A partir da definição, nós temos

EV(X) := sum(k * p(X=k), k = 1..n);
simplify(%);

5. Gerando combinações e permutações

Aqui está uma implementação do algoritmo para gerar a próxima r-combinação (exemplo 5).

NextrCombination := proc(current, n, r)
local next, i, j;

faça uma cópia que possamos mudar

next := table(current);
  i := r;
  while next[i] = n - r + i do i := i -1 od;
  next[i] := next[i] + 1;
  for j from i+1 to r do
    next[j] := next[i] + j - i;
  od;
  [seq( next[i], i=1..r) ];  # return the answer
end:

Teste-a no exemplo.

NextrCombination([1,2,5,6], 6, 4);
NextrCombination(%,6,4);
NextrCombination(%,6,4);

Alguma explicação é necessária. Primeiro, a combinação atual é uma lista, não um conjunto. Isso é porque a lista é ordenada, mas um conjunto é desordenado. Para encontrar a “next” combinação, nós precisamos saber a ordem dos elementos na combinação atual. Mas no Maple, a ordem que digitamos um conjunto e a ordem que aparece dentro do Maple não são necessariamente a mesma coisa.

pear, orange, apple;

Mas ela sempre a mesma para uma lista.

[pear,orange,apple];

O próximo problema é que você não pode, antes da versão 4 do Maple V, atribuir um elemento específico dentro de uma lista.

mylist := [a,b,c,d]:
mylist[2] := e;

Então, a primeira coisa que fazemos nesse algoritmo é fazer uma tabela que contém todos os elementos na combinação. Nós podemos atribuir na tabela, então nosso problema acaba.

mytable := table(mylist);
mytable[2] := e;
print(mytable);

Com o pacote “combstruct”, você pode criar um iterador que vai produzir todos os objetos de um certo tamanho, um por vez.

it := iterstructs(Combination(6),size=4):
nextstruct(it);
nextstruct(it);
nextstruct(it);

Chamando essa função algumas vezes mais, nos leva a:

nextstruct(it);

onde a próxima 4-combinação é então:

nextstruct(it);

pela qual nós podemos ver que esse iterador está usando a mesma lexicografia ordenando como usamos no algoritmo 3.

6. Computações e explorações

1. Dado um inteiro positivo “n”, encontre a probabilidade de selecionar seis inteiros do conjunto { ${\displaystyle 1,\cdots ,n}} que foram mecânicamente selecionados em uma loteria.

Solução Nós seguiremos o exemplo 4 no texto. O número total de maneiras de escolher 6 números de “n” números é , que pode ser encontrado com o procedimento “numbcomb” no pacote “combinat”. Isso nos dá o número total de possibilidades, onde apenas uma irá vencer.

Lottery := proc(n::posint) 
local total; 
   total := combinat[numbcomb](n, 6); 
   1.0 / total; 
end: 
Lottery(49); 

Se as regras da loteria mudarem, para que o número de números escolhidos seja algo diferente de 6, então nós devemos modificar o procedimento acima. (Por exemplo, talvez agora possamos escolher 5 números de 499, em vez de 6.) Nós podemos facilmente modificar nosso programa para nos deixar especificar quantos números nós queremos escolher adicionando outro parâmetro.

Lottery2 := proc(n::posint, k::posint) 
local total; 
     total := combinat[numbcomb](n,k); 
     1.0 / total;  
end: 
Lottery2(49,6); 
Lottery(30,3); 
2. Dados inteiros positivos “n” e “r”, liste todas as r-combinações, com repetições permitidas, do conjunto .

Solução A função “choose” do Maple (no pacote “combinat”), vai listar todas as r-combinações de, mas sem repetições. Portanto nós não podemos usá-la diretamente. Entretanto, digamos que queremos todas as 2-combinações de, com repetições. Isso quer dizer que junto com , e , nós também queremos incluir, e . Nós queremos ser capazes de escolher cada número até 2 vezes. (Nós dizemos que podemos repetir um elemento qualquer número de vezes, mas na prática, já que nós apenas podemos escolher 2 coisas no total, nós só precisamos permitir cada número aparecer no máximo 2 vezes.) Então outra forma de olhar o problema é dizer que queremos todas as 2-combinações, sem repetição, do conjunto. Em geral, então, nós podemos encontrar todas as r-combinações de com repetição pedindo por todas as r-combinações, onde cada elemento aparece “r” vezes.

RCombRepetition := proc(n::posint, r::posint) 
local repeatlist, i; 
    repeatlist := [ seq( i $ r, i=1..n) ]; 
    combinat[choose](repeatlist, r); 
end: 
RCombRepetition(3,2); 
RCombRepetition(4,3); 

(Notas sobre o procedimento: O “i $ r” significa repetir “i” r vezes.

1 $ 3; 
happy $ 4; 

Além disso, nós precisamos usar uma lista em vezes de um conjunto, já que o Maple automaticamente remove elementos repetidos em um conjunto e nós perderíamos todas as repetições.)

happylist := [ happy $ 4]; 
happyset := happy $ 4 ; 
3. Encontre o número de resultados possíveis em uma partida de dois times quando o vencedor é o primeiro time a ganhar 5 de 9, 6 de 11, 7 de 13 ou 8 de 15 jogos.

Solução Nossa solução vai usar o procedimento Maple chamado “permute” para computar o número total de maneiras que um torneio de jogos pode ser jogado. Vamos começar construindo duas listas que observa como cada um dos dois times pode ganhar. Nós iremos atribuir as duas do time 1 vencendo o torneio sem nenhuma derrota, e o time 2 vencendo o torneio sem nenhuma derrota. A cada iteração do loop principal do algoritmo, vamos computar as permutações possíveis de jogos a serem jogados, notando que a ordem de vitórias é importante para nós. Após essas permutações serem calculadas, nós vamos aumentar o número de jogos que o torneio dura (ou seja, permite o eventual time perdedor do torneio a vencer um jogo adicional). Isso é equivalente a usar um diagrama de árvore para computar os resultados possíveis. O loop externo (while) corresponde ao nível de vértices na árvore, e o loop interior (for) itera sobre todos os jogos naquele nível. A implementação Maple dessa descrição é mostrada abaixo.

Tournaments:=proc(games::integer) 
  local i, one_wins, two_wins, Temp, S; 

Inicialize uma lista para garantir que o time 1 vença

 one_wins:=[seq(1, i=1..ceil(games/2))]; 

Inicialize uma lista para garantir que o time 2 vença

 two_wins:=[seq(2, i=1..ceil(games/2))]; 
  S:={}; 

Percorra até nós termos todos os jogos da série usados

 while nops(one_wins) <= games do 

Calcule os resultados possíveis que completam em jogos exatos

   Temp:=permute(one_wins); 
    for i from 1 to nops(Temp) do 

Garanta que nós realmente precisamos de todos os jogos (ou seja, o último jogo da série foi vencido pelo time 1)

      if Temp[i][nops(one_wins)] = 1 then 
         S:=S union Temp[i] 
      fi; 
    od; 

Calcule os resultados possíveis que completa em jogos exatos

   Temp:=permute(two_wins); 
    for i from 1 to nops(Temp) do 

Garanta que nós realmente precisamos de todos os jogos (ou seja, o último jogo da série foi vencido pelo time 2)

      if Temp[i][nops(two_wins)] = 2 then 
         S:=S union Temp[i] 
      fi; 
    od; 

Incremente o número de jogos, para que o time vencedor do torneio perca um jogo a mais.

   one_wins:=[op(one_wins), 2]; 
    two_wins:=[op(two_wins), 1]; 
  od; 
  S; 
end: 

Agora nós usamos esse procedimento recentemente criado em torneios que são o melhor de “3-de-5” e o melhor de “4-de-7” em número de jogos.

Tournaments(5); 
nops(%); 
nops(Tournaments(7)); 

Ao leitor é deixado explorar os casos restantes, e conjecturar uma fórmula no caso geral.

4. Nós queremos olhar para os coeficientes binomiais . Especificamente, para muitos exemplos, nós queremos determinar se é divisível pelo quadrado de um primo, e se o maior expoente na fatorização do primo cresce sem limites enquanto “n” cresce.

Solução Primeiro tentaremos um exemplo, para ver o que exatamente desejamos fazer, e então escrever um programa.

c := binomial(6,3); 

Nós usamos a função “ifactors” (o “i” significa “integer”) para fatorar “c”. Essa função é uma das várias do Maple que deve ser definida “readlib” antes que possamos usá-la. Isso significa que pedimos para o Maple encontrar a função na sua biblioteca, e carregá-la na sessão atual.

readlib(ifactors): 
ifacts := ifactors(c); 

A página de ajuda para “ifactors” explica o que este resultado significa. Ela diz que . Nós estamos interessados nos expoentes dos primos. Primeiro, pegamos o segundo elemento da lista, para obter a lista dos primos e expoentes.

facts := ifacts[2]; 

Isso nos dá uma lista de listas, onde o primeiro elemento em cada lista é o fator primo, e o segundo é a multiplicidade (o número de vezes que o fator aparece) daquele primo. Então nós queremos percorrer a lista e obter o segundo elemento de cada sublista.

powers := seq(x[2],x=facts); 

Então nós usamos a função “max” para encontrar o maior expoente.

max(powers); 

Se o maior exemplo é maior que 1, então é divisível pelo quadrado de um primo. Nesse caso, o maior exemplo 2 é, de fato, maior que 1, e sem dúvida é divisível por . Combinando esses passos, agora nós escrevemos um programa que dado “n”, retorna o maior expoente na fatorização de .

LargestExpon := proc(n) 
local c, ifacts, x; 
    c := binomial(2*n,n); 
    ifacts := ifactors(c); 
    max(seq(x[2],x=ifacts[2])); 
end: 
LargestExpon(6); 

Agora nós vamos escrever outra rotina que vai calcular o maior expoente para muitos valores de “n”, e armazenar os resultados numa tabela.

Manyn := proc(maxn) 
local results, i; 
  for i to maxn do 
      results[i] := LargestExpon(i); 
      if results[i] = 1 then 
         printf(`Hurray! A counterexample! %d`, i); 
      fi; 
  od; 
  eval(results); 
end: 

Rode o programa e veja o que acontece.

Manyn(10): 

Parece que 1, 2 e 4 são valores de “n” tais que não é divisível pelo quadrado de um primo.

binomial(8,4); 
ifactors(%); 

Agora deixe o programa rodar por muito mais tempo, e veja se nós podemos encontrar algo mais.

vals := Manyn(200): 

Vamos olhar para o crescimento do expoente máximo representando graficamente os resultados.

plot([ seq([i,vals[i]],i=1..200)],style=POINT, 
title=`Growth of Largest Exponents`); 

Para comparar, tente novamente com ainda mais valores de “n”.

vals := Manyn(300): 

Dessa vez, plote com os pontos que participaram, para ver que diferença isso faz.

plot([ seq([i,vals[i]],i=1..300)], 
title=`Growth of Largest Exponents 2`); 

É difícil encontrar quaisquer conclusões desses dois gráficos, além de que não parece ser um limite para o tamanho. O tempo de cálculo está se tornando longo, mas ainda podemos olhada para alguns exemplos maiores.

LargestExpon(500); 
LargestExpon(1001); 
LargestExpon(1005); 
LargestExpon(1007); 
LargestExpon(1009); 
5 . Estime a probabilidade que dois inteiros escolhidos aleatoriamente sejam relativamente primos testando um grande números de pares de inteiros aleatoriamente selecionados. Observe o teorema que dá essa probabilidade e compare seus resultados com a probabilidade correta.

Solução Para resolver esse problema, três coisas devem ser feitas.

  1. Crie um método para gerar pares de inteiros aleatórios.
  2. Produza um grande número desses pares, testando se eles são relativamente primos, e observe a probabilidade estimada baseada nessa amostra.
  3. Observe o teorema mencionado em questão.


Naturalmente, nós deixaremos a parte 3 inteiramente para o leitor. Uma simples aproximação é usar o procedimento do Maple “rand” para gerar uma lista de inteiros aleatórios. Então, tendo gerado tal lista nós podemos testar a coprimalidade de seus membros em pares usando o procedimento Maple “igcd” em um segundo loop. Nós implementamos esses dois loops em um novo procedimento Maple chamado “RandPairs”:

RandPairs := proc(list_size::integer) 
  local i, tmp, randnums, count; 
  randnums := NULL; 

Gera a lista de inteiros aleatórios

 for i from 1 to list_size do 
    tmp := rand(); 
    randnums := randnums, tmp(); 
  od; 
  randnums := [randnums]; 

Conta o números de pares que são coprimos

 count := 0; 
  for i from 1 by 2 to list_size-1 do 
    if igcd(randnums[i], randnums[i + 1]) = 1 then 
      count := count + 1; 
    fi; 
  od; 
  count; 
end: 

Podemos agora executar esse procedimento em 1000 pares de inteiros, como a seguir:

RandPairs(200); 

Então, podemos determinar a porcentagem de pares coprimos usando esse resultado.

evalf(RandPairs(200)/100); 

Observe que repetindo a computação idêntica pode muito bem levar a um resultado de certa forma diferente já que a lista de inteiros que usamos foi gerada aleatoriamente. Você deve tentar isso como uma amostra de tamanho muito maior, digamos 10000 pares de inteiros.

6. Determine o número de pessoas necessárias para assegurar que a probabilidade de apenas duas delas terem o mesmo dia do ano como seu aniversário é pelo menos 700 porcento, pelo menos 800 porcento, pelo menos 900 porcento, pelo menos 955 porcento, pelo menos 988 porcento, e pelo menos 999 por cento.

Solução Dado que sabemos a fórmula para a probabilidade de duas pessoas fazerem aniversário no mesmo dia, nós podemos usar Maple para percorrer uma variedade de número de pessoas possíveis, até que alcancemos a probabilidade maior que a probabilidade desejada.

Se considerarmos a probabilidade que nenhuma dupla de pessoas possuem o mesmo aniversário como “p”, nós podemos determinar a probabilidade de que apenas duas pessoas nasceram no mesmo dia do ano como . Para determinar o que é “p”, observamos que se nós temos k pessoas, a primeira pessoa possui a probabilidade de 1 que ter o mesmo aniversário que ela mesma. A segunda pessoa tem 364 outros dias de 365 para escolher para que ela não faça aniversário no mesmo dia que a primeira pessoa. Similarmente para a pessoa , onde a k-gésima pessoa tem escolhas. Tomando o produto dessas probabilidades, concluímos que , que nos permite facilmente computar . Agora nós representamos e combinamos essa informação num procedimento Maple chamado “Birthdays”.

Birthdays := proc(percentage::float) 
  local num_people, cur_prob; 

Inicializa

 cur_prob := 0; num_people:=0; 

Percorre enquanto houver pessoas

 while cur_prob < percentage do 
    num_people := num_people + 1; 
    cur_prob := 1  
       -(numbperm(365,num_people) / 365^num_people); 
  od; 
  RETURN(num_people); 
end: 

Esse procedimento retorna o número de pessoas requeridas para atingir a probabilidade dada de que duas pessoas tenho o mesmo aniversário. Agora nós executamos nosso procedimento em alguns casos de teste, para probabilidades de 0.70, 0.80 e 0.90;

Birthdays(.70); 
Birthdays(.80);       
Birthdays(.90); 

7. Exercícios/Projetos

1. Use Maple para gerar várias filas do triângulo de Pascal, veja se você pode formular algumas conjecturas satisfeitas pelos coeficientes binomiais C(n,k).

2. Use o Maple para determinar quantas palavras diferentes podem ser feitas com a palavra PAPARRAZZI quando todas as letras forem usadas; quando algum número de letras forem usadas; quando todas as letras forem usadas e a palavra começa e termina com a letra Z; quando todas as letras são usadas e os três A’s são consecutivos.

3. Use o Princípio da casa dos pombos para projetar e então implementar um procedimento Maple que encontre a subsequência crescente máxima de uma dada sequência de números. (Veja a página 2455, et seq no seu texto.)

4. Suponha que um certo Departamento de Matemática possui “m” professores e “f” professoras. Escreva um procedimento maple para encontrar todos os comitês com 2000 membros em que ambos os sexos são representados igualmente.

5. Use Maple para provar a identidade , para inteiros positivos n e k com .

6. Use Maple para provar a identidade de Pascal: , para todos os inteiros positivos n e k com .

7. Use Maple para determinar o inteiro k ao qual as chances de se pegar seis números corretamente em uma loteria dos primeiros k inteiros positivo é menor que

  1. 1 em 1000 milhões,
  2. 1 em um bilhão (10^9),
  3. 1 em 100 bilhões,
  4. 1 em 1000 bilhões, e
  5. 1 em um trilhão (10¹²).

8. Use Maple para contar e listar todas as soluções para a equação onde , , e são inteiros não negativos.

9. Gere um grande triângulo de números Stirling e procure por padrões que sugerem identidades entre os números Stirling. (Um pequeno triângulo foi mostrado na seção 4.22.) Você pode fazer quaisquer conjecturas sobre a relação entre os números de Stirling e os coeficientes binomiais?

10. Escreva uma função Maple que recebe como entrada três inteiros positivos n, k e i, e returna o i-ésimo multinomial, em ordem lexicográfica, do polinomial . Escreva seu inverso; isto é, dado um multinomial, o inverso deve retornar seu índice (posição) no polinomial ordenado.

11. Escreva um programa Maple para computar a expansão de Cantor de um inteiro. (Veja página 2988 do livro.)

12. Implemente, em Maple, o algoritmo para gerar o conjunto de todas as permutações dos primeiros “n” inteiros, usando a bijeção da coleção de todas as permutações do conjunto {} para o conjunto {} descrito anteriormente no exercício 100 na página 2988 do livro.

13. Escreva um procedimento Maple para gerar permutações aleatórias como descritas no exercício 144 da página 2988 do livro.


Exemplos Extras

Exemplos extras da seção 4.1

EXEMPLO (E1, pag 302) Há 3 voos disponiveis de Indianapolis para St.Louis e, independentemente de quais desses voos será escolhidos, há 5 voos disponiveis de St.Louis para Dallas.De quantas maneiras uma pessoa pode voar de Indianapolis para St.Louis para Dallas?

Solução: Uma vez que existe 3 maneiras para fazer a primeira parte da viajem e 5 maneiras de continuar com a segunda parte da viagem, independentemente de qual vôo for feita para a primeira etapa da viagem, pela regra do produto há 3 x 5 =15 maneiras de fazer toda a viagem.

EXAMPLE (E2, pag 302) Um certo tipo de botao de uma fechadura de porta exige que voce insira um codigo antes que a fechadura abra.O bloqueio tem 5 botoes, numerados de 1 a 5.

(a) Se voce escolher um código de entrada que consiste de uma sequencia de 4 digitos, com números repetidos permitidos, quantos códigos de entrada são possíveis? (b) Se voce escolher um código de entrada que consiste de uma sequencia de 4 digitos, sem repetir os números, quantos códigos de entrada são possíveis? Solução: Precisa-se preencher os espaços em branco,mas cada espaço deve ser preenchido com inteiros diferentes de 1 a 5.Usando a regra do produto pode ser aplicado 5! = 5x4x3x2x1 = 120 maneiras.


EXAMPLE (E3, page 302) Conte os numeros de instruções de impressão nesse algoritmo:

   de i=1 até  n 

inicio

   de j=1 ate n  
        print  hello  
   de k=1 ate n  
        print  hello 

fim

Solução: Para cada valor de i,tanto o laço do 'j' como o do 'k' sao executados. Assim a cada i, o número de declarações de impressão executado é 2Xn .Portanto o numero total de instruções de impressao executados é 2xn² .

EXEMPLO (E4, page 302) Conte os numeros de instruções de impressão nesse algoritmo:

   de i=1 até  n 

inicio

   de j=1 ate n  
        print  hello  
   de k=i+1 ate n  
        print  hello 

fim

Solução: Para cada valor de i,tanto o laço do 'j' como o do 'k' sao executados. Assim a cada laço do i, o número de declarações de impressão executado é i no primeiro laço mais n-i no segundo laço. Portanto para cada i, o numero de impressoes é i + (n-i) = n.

EXEMPLO (E5, pag 306) Encontre o numero de palavras com 10 letras sem repeti-las: (a) que não tenha vogais. (b) que começam com uma vogal. (C) que tenha C e V nas extremidades (em qualquer ordem). (d) que tenha vogais nas duas primeiras posições.

Solução: para resolver o problema é ter em mente uma fila de dez espaços em branco : a) Cada um dos 10 espaços em branco da cadeia deve conter 1 das 21 consoantes,sem repeti-las.Pela regra do produto: 21 X 20 X 19 X 18 X ... X 12.

b)Existem 5 possibilidades da primeira letra ser uma vogal.Se a vogal for colocada no primeiro espaço em branco existem 25 maneiras para preencher no segundo espaço,24 maneiras de preencher o terceiro espaço,etc . 5 x 25 x 24 x 23 x ... x 18 x 17.

c)Primeiramente contamos o número de maneiras de preencher os 10 espaços começando com C e terminando com V,o numero de manerias de preencher as oito letras restantes é 24 x 23 x ... x 18 x 17;

                      C _ _ _ _ _ _ _ _ V
   Da mesma forma,o número de palavras,porem agora,começando com  V e terminado com C, 24 x 23 x ... x 18 x 17;
                      V _ _ _ _ _ _ _ _ C

Logo,pela regra da soma :

      (24 x 23 x ... x 18 x 17) + (24 x 23 x ... x 18 x 17) =     = 2 x (24 x 23 x ... x 18 x 17)

d) Primeiramente vamos contar o número de maneiras de colocar as vogais nos dois primeiros espaços em branco.Podemos escolher qualquer uma das 5 vogais para a primeiro espaço e das 4 vogais restantes para o 2 espaço : 5 x 4=20 maneiras de colocar duas vogais nas duas primeiras posições.

   Em seguida, vamos preencher os 8 espaços restantes com 24 letras que faltam.Sendo feito da seguinte forma : 24 x 23 x ... x 18 x 17 maneiras.
    Portanto, o número de maneiras de colocar vogais nois dois primeiros espaços e oito letras nos restantes dos espaços é: 5    x 25 x 24 x 23 x ... x 18 x 17


EXAMPLE (E6, page 306) 10 homens e 10 mulheres estão em uma fila: (a) encontre quantas possibilidades pode ser formada a fila. (b) encontre quantas possibilidades pode ser formada a fila se duas pessoas do mesmo sexo não podem ficar lado a lado; (c) encontre quantas possibilidades pode ser formada a fila se Beryl, Carol, e Darryl querem ficar juntas nesta sequencia (Carol, Beryl, and Darryl; ou Darryl, Beryl, e Carol). Solução: a)Há 20 pessoas;Portanto eles podem ser colocados em uma fila: 20 x 19 x 18 x....x 1 = 20! b)se duas pessoas do mesmo sexo não podem ficar lado a lado;Entao há dois padroes possiveis, usando M para Masulino e F para Feminino:

            MFMFMFMFMFMFMFMFMFMF e FMFMFMFMFMFMFMFMFMFM.

Se contar o numero de maneiras de se obter a primeira possibilidade, dobramos ela para chegarmos ao resultado final.O Primeiro homem pode ser escolhido em 10 maneiras, a Primeira mulher pode ser escolhida de 10 Maneiras, o homem Segundo pode ser escolhido de 9 maneiras, etc.Assim,pela regra do produto temos : 10 x 10 x 9 x 9 x ... x 2 x 2 x 1 x 1 ou (10!)² maneiras.

c)Considerando primeiro os arranjos onde Beryl,Carol e Darryl ficam um ao lado do outro,nessa ordem.Colocando as outras 17 pessoas na fileira.o que pode ser feito em 17! Maneiras.Nao importa como as 17 pessoas sao colocadas na fila,Beryl,Carol e Darryl,pode ser inserido,nessa ordem,entre duas das 17, ou então colocado em uma das duas extremidades.

     No entanto, uma vez que escolher um local para colocar Beryl, Carol, e Darryl, existem 3! = 6 maneiras de colocar Beryl, Carol, e Darryl nesse ponto --- BCD, BDC, CBD, CDB, DBC, DCB. 
      Portanto, a resposta é obtida colocando os outros 17 em uma fileira; escolher um dos 18 pontos para Beryl, Carol, e Darryl; e organizar os três em um local (em 3! maneiras). Assim, a resposta é: 17! x 3!

EXEMPLO (E7, página 308) Encontre o número de palavras 10 letras : (a) não contenha vogais. (b) começar com uma vogal. (c) ter vogais nas duas primeiras posições. (d) começar com C e terminam com V. (e) começar com C ou terminar com V.

para resolver o problema é ter em mente uma fila de dez espaços em branco : a) Cada um dos 10 espaços em branco da cadeia deve conter 1 das 21 consoantes,como podemos repeti-las.Pela regra do produto: 21 X 21 X 21 X 21 X ... X 21 = 21^10 ; b)Há cinco opções para uma vogal ser colocada na primeira posição, e não há restrições sobre os outros nove letras,por isso : 5 x 26^9 c)Se essas vogais devem estar nas duas primeiras posições e as letras podem ser repetidas, obtém-se o produto: 5² x 26^8 d)Se a palavra tem a forma : C....V existem 26 maneiras para preencher cada uma dos oito espaços. Portanto, há 26^8 palavras desta forma. e)Precisa-se usar o princípio da inclusão-exclusão para evitar a dupla contagem.Sendo A¹ o conjunto de todas as palavras com 10 letras que começam com C e A² o conjunto de todas as palavras com 10 letras que terminam com V: A¹ U A² = |A¹|+|A²| - |A¹ n A²| = 26^9 + 26^9 - (26^8);

Exemplos da Seção 4.2

EXEMPLO (E1, pág 314) Provar que em qualquer grupo de três números inteiros positivos, existem pelo menos dois, cuja a soma é par.

Solução: Considere dois compartimentos, classificado em Par e Ímpar. Se três inteiros positivos são colocados nestes compartimentos, um deles deve ter pelo menos dois inteiros (digamos A e B) no mesmo compartimento. Assim, A e B são ou ambos par ou impar. Em ambos os casos, A + B é PAR.

EXEMPLO (E2, pág 314) Se forem escolhidos inteiros positivos aleatoriamente, qual é o número mínimo que podemos garantir que dois dos números escolhidos sejam congruentes módulo 6.

Solução: Para que A e B serem congruentes módulo 6, temos de ter a mod 6 = b mod 6. Mas existem 6 possibilidades para x mod 6: 0, 1, 2, 3, 4, ou 5. Portanto, 7 inteiros positivos devem ser escolhidos de modo a garantir que, pelo menos, dois sejam congruentes módulo 6.

EXEMPLO (E3, página 314) Prove que em qualquer conjunto de 700 palavras em inglês, deve haver pelo menos duas que começam com o mesmo par de letras (na mesma ordem), por exemplo, ST OP e STAndard. Solução: O número de possíveis pares de letras que podem aparecer nas duas primeiras posições é 26 x 26=676.Assim, qualquer conjunto de 677 ou mais palavras deve ter pelo menos duas palavras com o mesmo par de letras no início da palavra.

(OBS:. Na realidade, o número 700 pode ser substituída com um número muito menor, uma vez que muitas combinações de letras não aparecem como as duas primeiras letras de uma palavra, por exemplo, não há palavras inglesas que começam com NQ, RR, ou TZ).


EXEMPLO (E4, página 315) Cada tipo de peça de uma máquina feita em uma fábrica é carimbada com um código do formulário de letter-digit-digit, onde os dígitos podem ser repetidos. Prove que, se 8000 peças são feitas, então, pelo menos, quatro delas devem ter o mesmo código carimbadas. Solução: O numero de codigos possiveis 26 x 10 x 10 = 2600. Desde que,8000 > 3 x 2600,pelo menos 4 tenham o mesmo codigo.


EXEMPLO (E5, página 315) Cada aluno é classificado como um membro de uma das seguintes classes: Freshman, Sophomore, Junior, Senior. Encontrar o número mínimo de estudantes que devem ser escolhidos de modo a garantir que, pelo menos, oito pertencem à mesma classe. Solução:De um grupo de 28 estudantes podem ser 7 pertencentes a cada classe.Mas se há 29 estudantes, pelo menos 8 devem ser membros da mesma classe.Portanto, o número mínimo de estudantes que deve ser escolhido é de 29.

Em outras palavras, nós estamos olhando para o número mínimo N tal que . O numero minimo é 29.

Exemplos adicionais relativas a Seção 4.3

EXEMPLO (E1, pág 321) Uma classe tem 30 alunos matriculados. De quantas maneiras pode-se: (a) Colocar 4 alunos em uma fila para uma foto? (b) Colocar todos os 30 alunos em uma fila para uma foto? (c) Colocar todos os 30 alunos em duas filas de 15 cada para uma foto?

Solução: (a) Precisamos preencher a seguinte linha de quatro espaços em branco: 30 x 29 x 28 x 27. Este é o número de permutações de 4 a partir de um conjunto de 30, que é P( 30 ,4 );

b)A resposta pode ser visualizado como o número de maneiras para preencher uma fila com 30 lacunas com os 30 estudantes, que é 30! , ou P( 30, 30 );

c) Podemos ver que o número de maneiras para preencher em duas filas,é cada uma com 15 espaços em branco, com os alunos 30:

 Podemos então, começar por preencher a linha de inferior, o que pode ser feito de 30 x 29 x 28 x … x 17 x 16 maneiras. Em seguida, preencher linha superior, que pode ser feito de 15! = 15 x 14 x 13… x 2 x 1 maneiras. Portanto a resposta é (30 x 29 x 28 x … x 17 x 16) x (15 x 14 x 13 x … x 2 x 1) = 30!

EXEMPLO (E2, página 324) Um certo tipo de botão de uma fechadura de porta exige que você insira um código antes que a fechadura abra.O bloqueio tem 5 botoes, numerados de 1 a 5.O bloqueio é programado para reconhecer seis códigos de 4 dígitos diferentes, podendo repetir os algarismos de cada código. Quantos conjuntos diferentes de códigos reconhecíveis existem?

Solução: Há 5⁴=625 possíveis códigos com quatro dígitos. Portanto, há C(625,6) conjuntos diferentes de códigos reconhecíveis. EXEMPLO (E3, página 324) …..

EXAMPLE (E4, page 324) Quantas maneiras existem de escolher uma comissão de cinco pessoas consistindo de três mulheres e dois homens de um grupo de dez mulheres e sete homens? Solução: O número de maneiras de escolher três mulheres é C( 10,3 ) e o numero de maneiras de escolher 10 homens é C(7,2).Usando a regra do produto para escolher três mulheres e dois homens é C( 10,3 ) x C(7,2) = 2,520.


EXEMPLO (E5, page 324) Sendo o conjunto S = {1,2,3,...,19}. Encontre o número de subconjuntos de S com numeros iguais de inteiros pares e impares.

Solução: Note que, existem 10 inteiros ímpares e 9 inteiros pares em S. Os subconjuntos a serem contados deve consistir de k inteiros ímpares e k inteiros pares, onde k=1,2,3,...,9. Portanto, pela regra do produto, o número de cada tipo é C(10, k) x C(9,k). Portanto, pela regra da soma, a resposta é C(10, k) x C(9,k) + C(10, k) x C(9,k)



EXEMPLO (E6, page 324) Encontre maneiras de dividir um baralho de 52 cartas, em: a)Em 4 pilhas iguais, classificado em A,B,C,D; b)Em 4 pilhas iguais, sem classificação;

Solução: a) Cada pilha deve conter 52/4 = 13 cartas. Na sequencia, empilharemos A,em seguida B, depois C, e finalmente D. Então teremos C(52,13) maneiras de obter a pilha de A, C(39,13) maneiras de obter a pilha de B, C(26,13) maneiras de obter a pilha de C, e C(13,13)=1 maneiras de obter a pilha de D.Portanto pela regra do produto,teremos : C(52,13) x C(39,13) x C(26,13) x C(13,13) =

b) Se nas 4 pilhas não houver classificação,então podemos permutar as quatro pilhas em 4! Maneiras. Daí a resposta é a mesma do iten anterior dividido por 4!:


EXEMPLO (E7, page 324)

Supunha que S = {1,2, . . ., 25} . Encontre o numero de subconjuntos de tamanho 5,tal que T: a) consista de 2 numeros impares e 3 numeros pares. b) consiste de exatamente três números primos. c) tenha a soma dos seus elementos, menor que 20. d) tem, pelo menos, um número par na mesma.


Solução: a) Há 13 numeros impares; podemos escolher dois em C(13,2) maneiras.Há 12 numeros pares; podemos escolher 3 em C(12,3) maneiras. Usando a regra do produto para encontrar o número de subconjuntos T, temos subconjuntos. b) Os numeros primos em S são 2,3,5,7,11,13,17,19, and 23, então temos C(9,3) maneiras de selecionar 3 desses numeros.Mas também precisa selecionar 2 dos 16 números compostos para fazer T ter tamanho cinco;então C(16,2) maneiras para isso.Portanto pela regra do produto temos C(9,3) x C(16,2)=10.080 subconjuntos possiveis T.

c) Há poucos subconjuntos com esta propriedade. Então é melhor neste caso, contar diretamente o conjunto de cinco números cuja soma é inferior a 20: 1,2,3,4,5, 1,2,3,4,6, 1,2,3,4,7, 1,2,3,4,8, 1,2,3,4,9, 1,3,4,5,6. Assim, existem seis desses subconjuntos possiveis.

d) É mais fácil para contar o número total de subconjuntos de tamanho 5, e depois subtrair o número de subconjuntos sem números pares neles:

Exemplos adicionais relativas a Seção 4.4

EXEMPLO (E1, página 328) Escreva a expansão de (x+2y)³.

Solução: pelo teorema binomial:

EXEMPLO (E2, page 328) Encontre o coeficiente na expansão de .

Solução: Expandindo usando o teorema binomial, localizamos o termo com o produto , e então encontramos o coeficiente:

= =

Assim, o coeficiente de é , que também pode ser escrito como .

EXEMPLO (E3, page 328) Escreva a expansão de

Solução: Usa-se o teorema binomial. Em seguida, várias regras exponenciais para simplificar os termos.

Exemplos adicionais relativas a Seção 4.5

EXEMPLO (E1, page 338) Uma padaria vende quatro tipos de biscoitos: chocolate, geleia, açúcar, manteiga de amendoim. Você pode comprar um saco com 30 biscoitos. Assumindo que a padaria tem pelo menos 30 de cada tipo de biscoito, quantos sacos contendo 30 biscoitos você poderia comprar se você deve escolher:

a) Ao menos 3 biscoitos de chocolate e pelo menos 6 biscoitos de manteiga de amendoim

b) Exatamente 3 biscoitos de chocolate e exatamente 6 biscoitos de manteiga de amendoim

c) No máximo 5 biscoitos de açúcar

d) Pelo menos um dos quatro tipos de biscoitos.

Solução:

EXEMPLO (E2, page 339) Quantos anagramas podem ser formados pela palavra DECEIVED?

Solução: Na palavra há dois ‘D’, três ‘E’, um ‘C’, um ‘I’ e um ‘V’. Portanto, o número de permutações de DECEIVED é:

EXEMPLO (E3, page 339) Um frasco contém 30 moedas de 1 centavo, 20 moedas de 5 centavos, 20 moedas de 10 centavos, e 15 moedas de 25 centavos. (As moedas de cada denominação são consideradas idênticas.)

(a) Encontre o número de maneiras de colocar todas as 85 moedas em uma fileira.

(b) Encontre o número de possíveis ‘punhados’ de 12 moedas.

Solução: (a) A resposta não é 85! uma vez que as moedas não são todos distintos. Pense no problema como um de fazer uma palavra com 30 p's, 20 n's, 20 d's, e 15 q's. Tendo em conta as cartas idênticas, temos

(b) Quando se contar o número de ‘punhados’ de 12 moedas, estamos apenas preocupados com o número de cada denominação escolhida. Por exemplo, poderíamos escolher 9 moedas de 1 centavos, 2 de 5 centavos, e uma de 25 centavos, ou podemos escolher três de cada denominação. Assim, o número de um ‘punhados’ de 12 moedas é igual ao número inteiro não negativo de soluções para a equação: onde P é o número de moedas de 1 centavo, n é o número de moedas de 5 centavos, d é o número de moedas de 10 centavos, e q é o número de 25 centavos. O número de soluções para esta equação é:

EXEMPLO (E4, page 339) De quantas maneiras é possivel colocar 7 das 8 letras de “CHEMISTS” em uma fila?

Solução:

Existem dois padrões a serem considerados:

(a) 7 letras distintas são selecionados (ou seja, apenas um S é selecionado), e

(b) os dois S serem selecionados.

No primeiro teste padrão, existem 7! Maneiras de colocar as 7 letras distintas em uma fileira.

No segundo padrão, as sete letras selecionadas têm dois S’s, por isso há 7! / 2! Maneiras de colocar essas letras em uma fileira.

Adicionando os totais obtidos a partir dos dois casos, temos o número total de maneiras de colocar sete dos oito cartas em uma fileira:

Exemplos adicionais relativas a Seção 4.6

EXEMPLO (E1, página 345) Coloque as seguintes permutações de 1, 2, 3, 4, 5, 6, na ordem lexicográfica :

Solução: Procedendo do menor ao maior, as permutações são:

EXEMPLO (E2, página 345) Encontre a permutação de 1, 2, 3, 4, 5, 6 imediatamente após 263.541 em ordem lexicográfica.

Solução: Os dígitos 5, 4, 1 estão em ordem decrescente, por isso precisamos aumentar o dígito seguinte, 3. Substitui-lo por 4 e, em seguida, colocar os dígitos restantes em ordem crescente, temos 264.1355.

EXEMPLO (E3, página 345) Encontre a permutação de 1, 2, 3, 4, 5, 6 imediatamente antes de 261.345 em ordem lexicográfica.

Solução:

Uma vez que os quatro últimos dígitos, 1345, estão em ordem crescente, a permutação que vem imediatamente antes deste deve ter um “5” na segunda posição e os quatro dígitos após o “5”, em ordem decrescente. Assim, o antecessor de 261.345 é 256.431.

EXEMPLO (E4, página 345) Se as permutações de 1,2,3,4,5,6 forem colocadas em ordem lexicográfica, com 123.456 na posição 1, 123.465 na posição 2, etc., encontrar a permutação na posição 362.

Solução:

Existem 6! = 720 permutações de 1, 2, 3, 4, 5, 6. O primeiro 120 (isto é, as permutações em posições de 1 a 120) começa com um “1”, o segundo 120 (nas posições 121 a 240) começar com “2”, etc. Assim, a primeira permutação começando com “4”, 412,356, é na posição 361. Assim , a próxima permutação, 412.365, vai estar na posição 362.

EXEMPLO (E5, página 345) Se as permutações de 1,2,3,4,5 forem colocadas em ordem lexicográfica, em que posição estará a permutação 41253?

Solução:

Existem 4! = 24 permutações de 1, 2, 3, 4, 5 que começam com 1; estas permutações estão em posições de 1 a 24. Da mesma forma, as permutações em posições 25 a 48 começam com 2 e as permutações em posições 49 através de 72 começam com 3 . Assim, a primeira permutação começando com 4, 41235, está na posição 73. Por conseguinte 41253 está na posição 74.