<math> \sum_{n=s}^t C\cdot f(n) = C\cdot \sum_{n=s}^t f(n)\text{, </math>onde C é uma constante. </math>
<math> \sum_{n=s}^t f(n) + \sum_{n=s}^{t} g(n) = \sum_{n=s}^t \left[f(n) + g(n)\right] </math>
<math> \sum\limits_{n=s}^{t} j = \sum\limits_{n=1}^{t} j - \sum\limits_{n=1}^{s-1} j </math>
<math> \sum_{n=s}^j f(n) + \sum_{n=j+1}^t f(n) = \sum_{n=s}^t f(n) \text{</math>, note que } <math> s \leq j \leq t </math>
<math> \sum_{i=m}^n i = \frac{n(n+1)}{2} - \frac{m(m-1)}{2} = \frac{(n+1-m)(n+m)}{2}, \text{ progressão aritmética.} </math>progressão aritmética.
<math> \sum_{i=0}^n i = \sum_{i=1}^n i = \frac{n(n+1)}{2} </math>