[[Exemplo 4.3.1 - Solução]]
'''Solução:'''
(a) Precisamos preencher a seguinte linha de quatro espaços em branco: 30 x 29 x 28 x 27. Este é o número de permutações de 4 a partir de um conjunto de 30, que é P( 30 ,4 );
(b)A resposta pode ser visualizado como o número de maneiras para preencher uma fila com 30 lacunas com os 30 estudantes, que é 30! , ou P( 30, 30 );
(c) Podemos ver que o número de maneiras para preencher em duas filas,é cada uma com 15 espaços em branco, com os alunos 30:
Podemos então, começar por preencher a linha de inferior, o que pode ser feito de 30 x 29 x 28 x … x 17 x 16 maneiras. Em seguida, preencher linha superior, que pode ser feito de 15! = 15 x 14 x 13… x 2 x 1 maneiras. Portanto a resposta é (30 x 29 x 28 x … x 17 x 16) x (15 x 14 x 13 x … x 2 x 1) = 30!
'''Exemplo 4.3.2 '''
''Um certo tipo de botão de uma fechadura de porta exige que você insira um código antes que a fechadura abra.O bloqueio tem 5 botoes, numerados de 1 a 5.O bloqueio é programado para reconhecer seis códigos de 4 dígitos diferentes, podendo repetir os algarismos de cada código. Quantos conjuntos diferentes de códigos reconhecíveis existem?(pág 324)''
[[Exemplo 4.3.2 - Solução]]
'''Solução:'''
...
[[Exemplo 4.3.3 - Solução]]
'''Exemplo 4.3.4'''
''Quantas maneiras existem de escolher uma comissão de cinco pessoas consistindo de três mulheres e dois homens de um grupo de dez mulheres e sete homens?(pág 324)''
[[Exemplo 4.3.4 - Solução]]
'''Solução:''' O número de maneiras de escolher três mulheres é C( 10,3 ) e o numero de maneiras de escolher 10 homens é C(7,2).Usando a regra do produto para escolher três mulheres e dois homens é C( 10,3 ) x C(7,2) = 2,520.
''Sendo o conjunto S = {1,2,3,...,19}. Encontre o número de subconjuntos de S com numeros iguais de inteiros pares e impares.(pág 324)''
[[Exemplo 4.3.5 - Solução]]
'''Solução:'''
''b)Em 4 pilhas iguais, sem classificação;''
[[Exemplo 4.3.6 - Solução]]
'''Solução:'''
''d) tem, pelo menos, um número par na mesma.''
[[Exemplo 4.3.7 - Solução]]
'''Solução:'''