Difference between revisions of "Somatório e Produtório"
Line 59: | Line 59: | ||
====Multiplicação por constante==== | ====Multiplicação por constante==== | ||
<math> \sum_{n=s}^t C\cdot f(n) = C\cdot \sum_{n=s}^t f(n) </math>, onde C é uma constante. | <math> \sum_{n=s}^t C\cdot f(n) = C\cdot \sum_{n=s}^t f(n) </math>, onde C é uma constante. | ||
+ | |||
+ | ===== Passo base: s = t ===== | ||
+ | <math> \sum_{n=s}^t C\cdot f(n) = C\cdot f(n) </math>, pela definição de somatório. | ||
+ | |||
+ | ===== Passo indutivo: s < t ===== | ||
+ | |||
+ | Suponha que para um <math>k \in N, k > s</math> arbitrário: | ||
+ | |||
+ | <math> \sum_{n=s}^k C\cdot f(n) = C\cdot \sum_{n=s}^k f(n) </math> (Hipótese de indução) | ||
+ | |||
+ | |||
+ | Para <math>k+1</math>, assumindo o lado esquerdo da equação, temos: | ||
+ | |||
+ | <math> \sum_{n=s}^{k+1} C\cdot f(n) = C\cdot f(k+1) + \sum_{n=s}^k C\cdot F(n)</math>, pela definição de somatório. | ||
+ | |||
+ | |||
+ | Aplicando a HI: | ||
+ | |||
+ | <math> \sum_{n=s}^{k+1} C\cdot f(n) = C\cdot f(k+1) + C\cdot \sum_{n=s}^k f(n)</math> | ||
+ | |||
+ | |||
+ | Expandindo <math>k-s</math> vezes: | ||
+ | |||
+ | <math> \sum_{n=s}^{k+1} C\cdot f(n) = C\cdot (f(k+1)) + C\cdot (f(k) + f(k-1) + ... + f(s+1) + f(s))</math> | ||
+ | |||
+ | |||
+ | Colocando <math>C</math> em evidência: | ||
+ | |||
+ | <math> \sum_{n=s}^{k+1} C\cdot f(n) = C\cdot (f(k+1) + f(k) + f(k-1) + ... + f(s+1) + f(s))</math> | ||
+ | |||
+ | <math> \sum_{n=s}^{k+1} C\cdot f(n) = C\cdot \sum_{n=s}^{k+1} f(n) </math> | ||
+ | |||
+ | |||
+ | Portanto: | ||
+ | |||
+ | <math> \sum_{n=s}^t C\cdot f(n) = C\cdot \sum_{n=s}^t f(n) </math>, onde C é uma constante, \forall t \in N. | ||
---- | ---- |
Revision as of 01:33, 9 December 2015
Contents
Propriedades de Somatório
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^t C\cdot f(n) = C\cdot \sum_{n=s}^t f(n) } , onde C é uma constante.
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^t f(n) + \sum_{n=s}^{t} g(n) = \sum_{n=s}^t \left[f(n) + g(n)\right] }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^t f(n) - \sum_{n=s}^{t} g(n) = \sum_{n=s}^t \left[f(n) - g(n)\right] }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum^n_{i = m} f(i) = \sum^{n+p}_{i = m+p} f(i-p) }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum\limits_{n=s}^{t} j = \sum\limits_{n=1}^{t} j - \sum\limits_{n=1}^{s-1} j }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^j f(n) + \sum_{n=j+1}^t f(n) = \sum_{n=s}^t f(n)} , note que Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s \leq j \leq t }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=m}^n i = \frac{n(n+1)}{2} - \frac{m(m-1)}{2} = \frac{(n+1-m)(n+m)}{2},} progressão aritmética.
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=0}^n i = \sum_{i=1}^n i = \frac{n(n+1)}{2} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum\limits_{k=0}^{n-1}{2^k} = 2^n-1 }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=s}^m\sum_{j=t}^n {a_i}{c_j} = \sum_{i=s}^m a_i \cdot \sum_{j=t}^n c_j }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=0}^n i^3 = \left(\sum_{i=0}^n i\right)^2 }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=m}^{n-1} a^i = \frac{a^m-a^n}{1-a} (m < n) }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=0}^{n-1} a^i = \frac{1-a^n}{1-a} }
Principais representações
Soma simples
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=1}^{n} x_i = x_1+x_2+...+x_n}
Soma de quadrados
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=1}^{n} x_i^2 = x_1^2+x_2^2+...+x_n^2}
Quadrado da soma
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\sum_{i=1}^{n} x_i)^2 = (x_1+x_2+...+x_n)^2}
Soma de produtos
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=1}^{n} x_iy_i = x_1y_1+x_2y_2+...+x_ny_n}
Produtos das somas
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\sum_{i=1}^{n} x_i)(\sum_{j=1}^{m} y_j) = (x_1+x_2+...+x_n)(y_1+y_2+...+y_n)}
Aplicação das Propriedades
Alguns exemplos de aplicações das propriedades do somatório:
Provas de algumas propriedades
Multiplicação por constante
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^t C\cdot f(n) = C\cdot \sum_{n=s}^t f(n) } , onde C é uma constante.
Passo base: s = t
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^t C\cdot f(n) = C\cdot f(n) } , pela definição de somatório.
Passo indutivo: s < t
Suponha que para um Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k \in N, k > s} arbitrário:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^k C\cdot f(n) = C\cdot \sum_{n=s}^k f(n) } (Hipótese de indução)
Para Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k+1}
, assumindo o lado esquerdo da equação, temos:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^{k+1} C\cdot f(n) = C\cdot f(k+1) + \sum_{n=s}^k C\cdot F(n)} , pela definição de somatório.
Aplicando a HI:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^{k+1} C\cdot f(n) = C\cdot f(k+1) + C\cdot \sum_{n=s}^k f(n)}
Expandindo Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k-s}
vezes:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^{k+1} C\cdot f(n) = C\cdot (f(k+1)) + C\cdot (f(k) + f(k-1) + ... + f(s+1) + f(s))}
Colocando Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C}
em evidência:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^{k+1} C\cdot f(n) = C\cdot (f(k+1) + f(k) + f(k-1) + ... + f(s+1) + f(s))}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^{k+1} C\cdot f(n) = C\cdot \sum_{n=s}^{k+1} f(n) }
Portanto:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=s}^t C\cdot f(n) = C\cdot \sum_{n=s}^t f(n) } , onde C é uma constante, \forall t \in N.
Somatório em Linguagem Funcional
Elixir[1]
defmodule FMC do def somatorio(start \\0, finish, callback) def somatorio(start, finish, callback) when start == finish do callback.(start) end def somatorio(start, finish, callback) do _somatorio(Enum.to_list(start..finish), callback) end defp _somatorio([], _), do: 0 defp _somatorio([head | tail], callback) do callback.(head) + _somatorio(tail, callback) end end